You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
76 lines
2.3 KiB
76 lines
2.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import unittest
|
|
import time
|
|
import random
|
|
import tempfile
|
|
import shutil
|
|
import numpy as np
|
|
|
|
import paddle
|
|
from paddle import Model
|
|
from paddle.static import InputSpec
|
|
from paddle.vision.models import LeNet
|
|
from paddle.hapi.callbacks import config_callbacks
|
|
import paddle.vision.transforms as T
|
|
from paddle.vision.datasets import MNIST
|
|
from paddle.metric import Accuracy
|
|
from paddle.nn.layer.loss import CrossEntropyLoss
|
|
|
|
|
|
class MnistDataset(MNIST):
|
|
def __len__(self):
|
|
return 512
|
|
|
|
|
|
class TestCallbacks(unittest.TestCase):
|
|
def setUp(self):
|
|
self.save_dir = tempfile.mkdtemp()
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.save_dir)
|
|
|
|
def test_visualdl_callback(self):
|
|
# visualdl not support python2
|
|
if sys.version_info < (3, ):
|
|
return
|
|
|
|
inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
|
|
labels = [InputSpec([None, 1], 'int64', 'label')]
|
|
|
|
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
|
|
train_dataset = MnistDataset(mode='train', transform=transform)
|
|
eval_dataset = MnistDataset(mode='test', transform=transform)
|
|
|
|
net = paddle.vision.LeNet()
|
|
model = paddle.Model(net, inputs, labels)
|
|
|
|
optim = paddle.optimizer.Adam(0.001, parameters=net.parameters())
|
|
model.prepare(
|
|
optimizer=optim,
|
|
loss=paddle.nn.CrossEntropyLoss(),
|
|
metrics=paddle.metric.Accuracy())
|
|
|
|
callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')
|
|
model.fit(train_dataset,
|
|
eval_dataset,
|
|
batch_size=64,
|
|
callbacks=callback)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|