You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
211 lines
7.4 KiB
211 lines
7.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/lod_reset_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LoDResetOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of LoDResetOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of LoDResetOp should not be null.");
|
|
|
|
if (!ctx->HasInput("Y")) {
|
|
auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
|
|
PADDLE_ENFORCE_GT(level0.size(), 0,
|
|
"If Input(Y) not provided, the target lod should be "
|
|
"specified by attribute `target_lod`.");
|
|
} else if (ctx->IsRuntime()) {
|
|
ctx->ShareLoD("Y", "Out");
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LoDResetOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext *ctx) const override {
|
|
auto x_var_name = ctx->Input("X").front();
|
|
auto out_var_name = ctx->Output("Out").front();
|
|
if (ctx->HasInput("Y")) {
|
|
auto y_var_name = ctx->Input("Y").front();
|
|
auto y_lod_level = std::max(ctx->GetLoDLevel(y_var_name), 1);
|
|
ctx->SetLoDLevel(out_var_name, y_lod_level);
|
|
} else {
|
|
ctx->SetLoDLevel(out_var_name, 1);
|
|
}
|
|
ctx->SetDataType(out_var_name, ctx->GetDataType(x_var_name));
|
|
ctx->SetType(out_var_name, paddle::framework::proto::VarType::LOD_TENSOR);
|
|
}
|
|
};
|
|
|
|
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, LoDTensor) Input variable of LoDResetOp which "
|
|
"could be a Tensor or LoDTensor, where the data of output "
|
|
"variable inherits from.");
|
|
AddInput("Y",
|
|
"(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
|
|
"lod of Input(Y) would be considered as the target lod first, "
|
|
"otherwise data of Input(Y) would be considered as the "
|
|
"target lod.")
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"(LoDTensor) Output variable of LoDResetOp which should be a "
|
|
"LoDTensor.");
|
|
AddAttr<std::vector<int>>("target_lod",
|
|
"The target level 0 LoD from Attr().")
|
|
.SetDefault(std::vector<int>{});
|
|
AddComment(R"DOC(LoDReset operator
|
|
|
|
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
|
|
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
|
|
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
|
|
provided, target LoD should be specified by attribute `target_lod`.
|
|
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
|
|
is supported.
|
|
|
|
Example 1:
|
|
|
|
Given a 1-level LoDTensor input(X):
|
|
X.lod = [[ 0, 2, 5 6 ]]
|
|
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
X.dims = [6, 1]
|
|
|
|
attr(target_lod): [0, 4, 6]
|
|
|
|
then we get a 1-level LoDTensor:
|
|
Out.lod = [[ 0, 4, 6 ]]
|
|
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
Out.dims = [6, 1]
|
|
|
|
Example 2:
|
|
|
|
Given a 1-level LoDTensor input(X):
|
|
X.lod = [[ 0, 2, 5 6 ]]
|
|
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
X.dims = [6, 1]
|
|
|
|
input(Y) is a Tensor:
|
|
Y.data = [[0, 2, 6]]
|
|
Y.dims = [1, 3]
|
|
|
|
then we get a 1-level LoDTensor:
|
|
Out.lod = [[ 0, 2, 6 ]]
|
|
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
Out.dims = [6, 1]
|
|
|
|
Example 3:
|
|
|
|
Given a 1-level LoDTensor input(X):
|
|
X.lod = [[ 0, 2, 5 6 ]]
|
|
X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
X.dims = [6, 1]
|
|
|
|
input(Y) is a 2-level LoDTensor:
|
|
Y.lod = [[0, 2, 4], [0, 2, 5, 6]]
|
|
Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
|
|
Y.dims = [6, 1]
|
|
|
|
then we get a 2-level LoDTensor:
|
|
Out.lod = [[0, 2, 4], [0, 2, 5, 6]]
|
|
Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
|
|
Out.dims = [6, 1]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LoDResetGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of LoDResetGradOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@Grad) of LoDResetGradOp should not be null.");
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", /*->*/ x_grad_name);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LoDResetGradDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("lod_reset_grad");
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetInput("X", Input("X"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
op->SetAttrMap(Attrs());
|
|
return op;
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LoDResetGradNoNeedBufferVarInference,
|
|
"X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
|
|
ops::LoDResetGradDescMaker, ops::LoDResetOpVarTypeInference);
|
|
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
|
|
ops::LoDResetGradNoNeedBufferVarInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
|
|
ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
|
|
ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
|
|
ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
|
|
ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
|
|
ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
|
|
ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);
|