You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.3 KiB
95 lines
3.3 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/one_hot_op.h"
|
|
#include "paddle/fluid/framework/framework.pb.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class OneHotOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of OneHotOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of OneHotOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
"Rank of Input(X) should be at least 2.");
|
|
PADDLE_ENFORCE_GE(x_dims[x_dims.size() - 1], 1U,
|
|
"Last dimension of Input(X) should be 1.");
|
|
|
|
int depth = ctx->Attrs().Get<int>("depth");
|
|
|
|
PADDLE_ENFORCE_GT(depth, 0, "Should provide a positive depth (%d).", depth);
|
|
|
|
framework::DDim out_dims(x_dims);
|
|
out_dims[out_dims.size() - 1] = depth;
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
ctx->ShareLoD("X", /* --> */ "Out");
|
|
}
|
|
};
|
|
|
|
class OneHotOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor, LoDTensor<int>) Input variable with rank at least 2. "
|
|
"The last dimension of X should be 1. Each value of X is an index "
|
|
"to indicate the position.");
|
|
AddOutput("Out",
|
|
"(Tensor, Tensor<float>) Output tensor with same rank as X. "
|
|
"The tensor consists of one-hot representations of values in X.");
|
|
AddAttr<int>("depth",
|
|
"A positive integer to specify the length of one-hot vector.");
|
|
AddAttr<int>("dtype",
|
|
"An integer to specify the data type of one-hot "
|
|
"vector. The default value is FP32.")
|
|
.SetDefault(paddle::framework::proto::VarType::FP32);
|
|
AddComment(R"DOC(
|
|
One Hot Operator. This operator creates the one-hot representations for input
|
|
index values. The following example will help to explain the function of this
|
|
operator:
|
|
|
|
X is a LoDTensor:
|
|
X.lod = [[0, 1, 4]]
|
|
X.shape = [4, 1]
|
|
X.data = [[1], [1], [3], [0]]
|
|
|
|
set depth = 4
|
|
|
|
Out is a LoDTensor:
|
|
Out.lod = [[0, 1, 4]]
|
|
Out.shape = [4, 4]
|
|
Out.data = [[0., 1., 0., 0.],
|
|
[0., 1., 0., 0.],
|
|
[0., 0., 0., 1.],
|
|
[1., 0., 0., 0.]]
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(one_hot, ops::OneHotOp, ops::OneHotOpMaker,
|
|
paddle::framework::EmptyGradOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
one_hot, ops::OneHotKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::OneHotKernel<paddle::platform::CPUDeviceContext, int64_t>);
|