You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/analysis/chinese_ner_tester.cc

155 lines
5.7 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <google/protobuf/text_format.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
namespace paddle {
namespace inference {
struct DataRecord {
std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
std::vector<size_t> lod; // two inputs have the same lod info.
size_t batch_iter{0};
size_t batch_size{1};
DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) {
Load(path);
}
DataRecord NextBatch() {
DataRecord data;
size_t batch_end = batch_iter + batch_size;
// NOTE skip the final batch, if no enough data is provided.
if (batch_end <= word_data_all.size()) {
data.word_data_all.assign(word_data_all.begin() + batch_iter,
word_data_all.begin() + batch_end);
data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
mention_data_all.begin() + batch_end);
// Prepare LoDs
data.lod.push_back(0);
CHECK(!data.word_data_all.empty());
CHECK(!data.mention_data_all.empty());
CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
for (size_t j = 0; j < data.word_data_all.size(); j++) {
data.rnn_word_datas.push_back(data.word_data_all[j]);
data.rnn_mention_datas.push_back(data.mention_data_all[j]);
// calculate lod
data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
}
}
batch_iter += batch_size;
return data;
}
void Load(const std::string &path) {
std::ifstream file(path);
std::string line;
int num_lines = 0;
while (std::getline(file, line)) {
num_lines++;
std::vector<std::string> data;
split(line, ';', &data);
// load word data
std::vector<int64_t> word_data;
split_to_int64(data[1], ' ', &word_data);
// load mention data
std::vector<int64_t> mention_data;
split_to_int64(data[3], ' ', &mention_data);
word_data_all.push_back(std::move(word_data));
mention_data_all.push_back(std::move(mention_data));
}
}
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
int batch_size) {
PaddleTensor lod_word_tensor, lod_mention_tensor;
lod_word_tensor.name = "word";
lod_mention_tensor.name = "mention";
auto one_batch = data->NextBatch();
int size = one_batch.lod[one_batch.lod.size() - 1]; // token batch size
lod_word_tensor.shape.assign({size, 1});
lod_word_tensor.lod.assign({one_batch.lod});
lod_mention_tensor.shape.assign({size, 1});
lod_mention_tensor.lod.assign({one_batch.lod});
// assign data
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
// Set inputs.
input_slots->assign({lod_word_tensor, lod_mention_tensor});
for (auto &tensor : *input_slots) {
tensor.dtype = PaddleDType::INT64;
}
}
// the first inference result
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
48, 39, 38, 16, 25};
void TestChineseNERPrediction() {
NativeConfig config;
config.prog_file = FLAGS_infer_model + "/__model__";
config.param_file = FLAGS_infer_model + "/param";
config.use_gpu = false;
config.device = 0;
config.specify_input_name = true;
auto predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
// Prepare inputs.
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
timer.tic();
for (int i = 0; i < FLAGS_repeat; i++) {
predictor->Run(input_slots, &outputs);
}
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << FLAGS_batch_size
<< ", repeat: " << FLAGS_repeat
<< ", latency: " << timer.toc() / FLAGS_repeat << "ms";
LOG(INFO) << "=====================================";
PADDLE_ENFORCE(outputs.size(), 1UL);
auto &out = outputs[0];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
[](int a, int b) { return a * b; });
PADDLE_ENFORCE_GT(size, 0);
int64_t *result = static_cast<int64_t *>(out.data.data());
for (size_t i = 0; i < std::min(11UL, size); i++) {
PADDLE_ENFORCE(result[i], chinese_ner_result_data[i]);
}
}
// Directly infer with the original model.
TEST(Analyzer, Chinese_ner) { TestChineseNERPrediction(); }
} // namespace inference
} // namespace paddle