You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
9.5 KiB
314 lines
9.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
|
|
#include <string>
|
|
#include <vector>
|
|
#include "glog/logging.h"
|
|
#include "paddle/fluid/memory/detail/buddy_allocator.h"
|
|
#include "paddle/fluid/memory/detail/system_allocator.h"
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
#include "paddle/fluid/string/printf.h"
|
|
#include "paddle/fluid/string/split.h"
|
|
|
|
DEFINE_bool(init_allocated_mem, false,
|
|
"It is a mistake that the values of the memory allocated by "
|
|
"BuddyAllocator are always zeroed in some op's implementation. "
|
|
"To find this error in time, we use init_allocated_mem to indicate "
|
|
"that initializing the allocated memory with a small value "
|
|
"during unit testing.");
|
|
DECLARE_double(fraction_of_gpu_memory_to_use);
|
|
|
|
namespace paddle {
|
|
namespace memory {
|
|
namespace legacy {
|
|
template <typename Place>
|
|
void *Alloc(const Place &place, size_t size);
|
|
|
|
template <typename Place>
|
|
void Free(const Place &place, void *p);
|
|
|
|
template <typename Place>
|
|
size_t Used(const Place &place);
|
|
|
|
struct Usage : public boost::static_visitor<size_t> {
|
|
size_t operator()(const platform::CPUPlace &cpu) const;
|
|
size_t operator()(const platform::CUDAPlace &gpu) const;
|
|
size_t operator()(const platform::CUDAPinnedPlace &cuda_pinned) const;
|
|
};
|
|
|
|
size_t memory_usage(const platform::Place &p);
|
|
|
|
using BuddyAllocator = detail::BuddyAllocator;
|
|
|
|
BuddyAllocator *GetCPUBuddyAllocator() {
|
|
// We tried thread_local for inference::RNN1 model, but that not works much
|
|
// for multi-thread test.
|
|
static std::once_flag init_flag;
|
|
static detail::BuddyAllocator *a = nullptr;
|
|
|
|
std::call_once(init_flag, []() {
|
|
a = new detail::BuddyAllocator(
|
|
std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
|
|
platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
|
|
});
|
|
|
|
return a;
|
|
}
|
|
|
|
// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
|
|
// seems they are almost the same overhead.
|
|
struct NaiveAllocator {
|
|
void *Alloc(size_t size) { return malloc(size); }
|
|
|
|
void Free(void *p) {
|
|
PADDLE_ENFORCE(p);
|
|
free(p);
|
|
}
|
|
|
|
static NaiveAllocator *Instance() {
|
|
static NaiveAllocator x;
|
|
return &x;
|
|
}
|
|
|
|
private:
|
|
std::mutex lock_;
|
|
};
|
|
|
|
template <>
|
|
void *Alloc<platform::CPUPlace>(const platform::CPUPlace &place, size_t size) {
|
|
VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
|
|
void *p = GetCPUBuddyAllocator()->Alloc(size);
|
|
if (FLAGS_init_allocated_mem) {
|
|
memset(p, 0xEF, size);
|
|
}
|
|
VLOG(10) << " pointer=" << p;
|
|
return p;
|
|
}
|
|
|
|
template <>
|
|
void Free<platform::CPUPlace>(const platform::CPUPlace &place, void *p) {
|
|
VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
|
|
GetCPUBuddyAllocator()->Free(p);
|
|
}
|
|
|
|
template <>
|
|
size_t Used<platform::CPUPlace>(const platform::CPUPlace &place) {
|
|
return GetCPUBuddyAllocator()->Used();
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
BuddyAllocator *GetGPUBuddyAllocator(int gpu_id) {
|
|
static std::once_flag init_flag;
|
|
static detail::BuddyAllocator **a_arr = nullptr;
|
|
static std::vector<int> devices;
|
|
|
|
std::call_once(init_flag, [gpu_id]() {
|
|
devices = platform::GetSelectedDevices();
|
|
int gpu_num = devices.size();
|
|
|
|
a_arr = new BuddyAllocator *[gpu_num];
|
|
for (size_t i = 0; i < devices.size(); ++i) {
|
|
int dev_id = devices[i];
|
|
a_arr[i] = nullptr;
|
|
platform::SetDeviceId(dev_id);
|
|
a_arr[i] = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
|
|
new detail::GPUAllocator(dev_id)),
|
|
platform::GpuMinChunkSize(),
|
|
platform::GpuMaxChunkSize());
|
|
|
|
VLOG(10) << "\n\nNOTE: each GPU device use "
|
|
<< FLAGS_fraction_of_gpu_memory_to_use * 100
|
|
<< "% of GPU memory.\n"
|
|
<< "You can set GFlags environment variable '"
|
|
<< "FLAGS_fraction_of_gpu_memory_to_use"
|
|
<< "' to change the fraction of GPU usage.\n\n";
|
|
}
|
|
});
|
|
|
|
platform::SetDeviceId(gpu_id);
|
|
auto pos = std::distance(devices.begin(),
|
|
std::find(devices.begin(), devices.end(), gpu_id));
|
|
return a_arr[pos];
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace &place) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
return GetGPUBuddyAllocator(place.device)->Used();
|
|
#else
|
|
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
void *Alloc<platform::CUDAPlace>(const platform::CUDAPlace &place,
|
|
size_t size) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto *buddy_allocator = GetGPUBuddyAllocator(place.device);
|
|
auto *ptr = buddy_allocator->Alloc(size);
|
|
if (ptr == nullptr) {
|
|
int cur_dev = platform::GetCurrentDeviceId();
|
|
platform::SetDeviceId(place.device);
|
|
size_t avail, total;
|
|
platform::GpuMemoryUsage(&avail, &total);
|
|
LOG(WARNING) << "Cannot allocate " << string::HumanReadableSize(size)
|
|
<< " in GPU " << place.device << ", available "
|
|
<< string::HumanReadableSize(avail);
|
|
LOG(WARNING) << "total " << total;
|
|
LOG(WARNING) << "GpuMinChunkSize "
|
|
<< string::HumanReadableSize(
|
|
buddy_allocator->GetMinChunkSize());
|
|
LOG(WARNING) << "GpuMaxChunkSize "
|
|
<< string::HumanReadableSize(
|
|
buddy_allocator->GetMaxChunkSize());
|
|
LOG(WARNING) << "GPU memory used: "
|
|
<< string::HumanReadableSize(Used<platform::CUDAPlace>(place));
|
|
platform::SetDeviceId(cur_dev);
|
|
}
|
|
if (FLAGS_init_allocated_mem) {
|
|
cudaMemset(ptr, 0xEF, size);
|
|
}
|
|
return ptr;
|
|
#else
|
|
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
void Free<platform::CUDAPlace>(const platform::CUDAPlace &place, void *p) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
GetGPUBuddyAllocator(place.device)->Free(p);
|
|
#else
|
|
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
BuddyAllocator *GetCUDAPinnedBuddyAllocator() {
|
|
static std::once_flag init_flag;
|
|
static BuddyAllocator *ba = nullptr;
|
|
|
|
std::call_once(init_flag, []() {
|
|
ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
|
|
new detail::CUDAPinnedAllocator),
|
|
platform::CUDAPinnedMinChunkSize(),
|
|
platform::CUDAPinnedMaxChunkSize());
|
|
});
|
|
|
|
return ba;
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
return GetCUDAPinnedBuddyAllocator()->Used();
|
|
#else
|
|
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
void *Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
|
|
size_t size) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
auto *buddy_allocator = GetCUDAPinnedBuddyAllocator();
|
|
void *ptr = buddy_allocator->Alloc(size);
|
|
|
|
if (ptr == nullptr) {
|
|
LOG(WARNING) << "cudaMallocHost Cannot allocate " << size
|
|
<< " bytes in CUDAPinnedPlace";
|
|
}
|
|
if (FLAGS_init_allocated_mem) {
|
|
memset(ptr, 0xEF, size);
|
|
}
|
|
return ptr;
|
|
#else
|
|
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
template <>
|
|
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace &place,
|
|
void *p) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
GetCUDAPinnedBuddyAllocator()->Free(p);
|
|
#else
|
|
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
struct AllocVisitor : public boost::static_visitor<void *> {
|
|
inline explicit AllocVisitor(size_t size) : size_(size) {}
|
|
|
|
template <typename Place>
|
|
inline void *operator()(const Place &place) const {
|
|
return Alloc<Place>(place, size_);
|
|
}
|
|
|
|
private:
|
|
size_t size_;
|
|
};
|
|
|
|
struct FreeVisitor : public boost::static_visitor<void> {
|
|
inline explicit FreeVisitor(void *ptr) : ptr_(ptr) {}
|
|
|
|
template <typename Place>
|
|
inline void operator()(const Place &place) const {
|
|
Free<Place>(place, ptr_);
|
|
}
|
|
|
|
private:
|
|
void *ptr_;
|
|
};
|
|
|
|
size_t Usage::operator()(const platform::CPUPlace &cpu) const {
|
|
return Used(cpu);
|
|
}
|
|
|
|
size_t Usage::operator()(const platform::CUDAPlace &gpu) const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
return Used(gpu);
|
|
#else
|
|
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
|
|
size_t Usage::operator()(const platform::CUDAPinnedPlace &cuda_pinned) const {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
return Used(cuda_pinned);
|
|
#else
|
|
PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
|
|
#endif
|
|
}
|
|
} // namespace legacy
|
|
|
|
namespace allocation {
|
|
|
|
Allocation *LegacyAllocator::AllocateImpl(size_t size, Allocator::Attr attr) {
|
|
void *ptr = boost::apply_visitor(legacy::AllocVisitor(size), place_);
|
|
return new Allocation(ptr, size, place_);
|
|
}
|
|
|
|
void LegacyAllocator::Free(Allocation *allocation) {
|
|
boost::apply_visitor(legacy::FreeVisitor(allocation->ptr()),
|
|
allocation->place());
|
|
delete allocation;
|
|
}
|
|
} // namespace allocation
|
|
} // namespace memory
|
|
} // namespace paddle
|