You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/math/tests/OriginalOptimizerApi.h

191 lines
7.6 KiB

/**
* OriginalOptimizerApi.h
*
* Author: hedaoyuan (hedaoyuan@baidu.com)
* Created on: 2016-06-29
*
* Copyright (c) Baidu.com, Inc. All Rights Reserved
*/
#pragma once
#include "paddle/utils/GlobalConstants.h"
#include "paddle/math/Vector.h"
using namespace paddle; // NOLINT
void SparseMomentumParameterOptimizer(const VectorPtr vecs[],
real alpha,
real beta,
real gamma,
real tau,
real learningRate) {
vecs[PARAMETER_MOMENTUM_UT]->add(*vecs[PARAMETER_GRADIENT],
-alpha * gamma * learningRate);
vecs[PARAMETER_MOMENTUM_VT]->add(*vecs[PARAMETER_GRADIENT],
tau * alpha * gamma * learningRate);
vecs[PARAMETER_VALUE]->add(*vecs[PARAMETER_MOMENTUM_UT],
tau / beta + 1.0 / alpha,
*vecs[PARAMETER_MOMENTUM_VT], 1.0 / beta);
}
void AdagradParameterOptimizer(const VectorPtr vecs[],
real epsilon,
real learningRate,
real momentum,
real decayRate) {
vecs[PARAMETER_GRADIENT_SQURESUM1]->addSquare(*vecs[PARAMETER_GRADIENT],
1.0f);
vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM],
*vecs[PARAMETER_GRADIENT_SQURESUM1]);
vecs[PARAMETER_LEARNING_RATE]->add(epsilon);
vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);
vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_MOMENTUM],
*vecs[PARAMETER_LEARNING_RATE], learningRate,
momentum, decayRate);
}
void AdaDeltaParameterOptimizer(const VectorPtr vecs[],
real rou,
real epsilon,
real learningRate,
real momentum,
real decayRate) {
// E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(*vecs[PARAMETER_GRADIENT],
rou, 1.0f - rou);
// learn_rate = sqrt( ( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ) )
vecs[PARAMETER_LEARNING_RATE]->dotDiv(*vecs[PARAMETER_GRADIENT_SQURESUM1],
*vecs[PARAMETER_GRADIENT_SQURESUM],
epsilon, epsilon);
vecs[PARAMETER_LEARNING_RATE]->sqrt2();
// E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
vecs[PARAMETER_GRADIENT_SQURESUM1]->decayAddSquareMul(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_LEARNING_RATE], rou,
1.0f - rou);
vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_MOMENTUM],
*vecs[PARAMETER_LEARNING_RATE], learningRate,
momentum, decayRate);
}
void RMSPropParameterOptimizer(const VectorPtr vecs[],
real accumulatedRou,
real rou,
real epsilon,
real learningRate,
real momentum,
real decayRate,
bool firstTime) {
// E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
// For the first time update, make the sum be the current square
// so that the initial estimation of E(g_t^2) will not be too small.
vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
*vecs[PARAMETER_GRADIENT], accumulatedRou,
firstTime ? 1.0f : 1.0f - rou);
// E(g_t) = \rou * E(g_{t-1}) + (1-\rou) * g
vecs[PARAMETER_GRADIENT_SQURESUM1]->add(*vecs[PARAMETER_GRADIENT],
accumulatedRou, 1.0f - rou);
// learn_rate = 1/sqrt( ( E(g_t^2) - (E(g_t))^2 + epsilon )
// Basiclly if the sign of the gradient changes more often,
// the learning rate will be decreased.
vecs[PARAMETER_LEARNING_RATE]->assign(*vecs[PARAMETER_GRADIENT_SQURESUM]);
vecs[PARAMETER_LEARNING_RATE]->addSquare(*vecs[PARAMETER_GRADIENT_SQURESUM1],
-1.0f);
vecs[PARAMETER_LEARNING_RATE]->add(epsilon);
vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);
vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_MOMENTUM],
*vecs[PARAMETER_LEARNING_RATE], learningRate,
momentum, decayRate);
}
void DecayedAdagradParameterOptimizer(const VectorPtr vecs[],
real accumulatedRou,
real rou,
real epsilon,
real learningRate,
real momentum,
real decayRate,
bool firstTime) {
// E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
// For the first time update, make the sum be the current square
// so that the initial estimation of E(g_t^2) will not be too small.
vecs[PARAMETER_GRADIENT_SQURESUM]->decayAddSquare(
*vecs[PARAMETER_GRADIENT], accumulatedRou,
firstTime ? 1.0f : 1.0f - rou);
// learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
// Basiclly if the bigger the magnitude gradient is,
// the smaller the learning rate will be.
vecs[PARAMETER_LEARNING_RATE]->assign(epsilon);
vecs[PARAMETER_LEARNING_RATE]->add(*vecs[PARAMETER_GRADIENT_SQURESUM]);
vecs[PARAMETER_LEARNING_RATE]->invSqrt(*vecs[PARAMETER_LEARNING_RATE]);
vecs[PARAMETER_VALUE]->sgdUpdate(
*vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_MOMENTUM],
*vecs[PARAMETER_LEARNING_RATE], learningRate,
momentum, decayRate);
}
void AdamParameterOptimizer(const VectorPtr vecs[],
real beta1,
real beta2,
real beta1_power,
real beta2_power,
real epsilon,
real learningRate) {
Vector* m = vecs[PARAMETER_MOMENTUM].get();
Vector* g = vecs[PARAMETER_GRADIENT].get();
Vector* v = vecs[PARAMETER_SECOND_MOMENTUM].get();
Vector* theta = vecs[PARAMETER_VALUE].get();
// m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
m->add(*g, beta1, 1 - beta1);
// v_t = \beta_2 * v_{t-1} + (1-\beta_2)* g_{t-1}^2
g->square2();
v->add(*g, beta2, 1 - beta2);
// tmp = m_t / ( \sqrt{v_t} + \epsilon )
// \theta_t = \theta_{t-1} - \alpha * \sqrt(1-\beta_2^t) / (1-\beta_1^t) * tmp
g->sqrt2(*v);
g->dotDiv(*m, *g, 0., epsilon);
real alpha = learningRate *
std::sqrt((real)1 - beta2_power) / ((real)1 - beta1_power);
theta->add(*theta, 1.0, *g, -alpha);
}
void AdamaxParameterOptimizer(const VectorPtr vecs[],
real beta1,
real beta2,
int64_t step,
real alpha) {
Vector* m = vecs[PARAMETER_MOMENTUM].get();
Vector* g = vecs[PARAMETER_GRADIENT].get();
Vector* u = vecs[PARAMETER_WEIGHTED_INFINITY_NORM].get();
Vector* theta = vecs[PARAMETER_VALUE].get();
// m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
m->add(*g, beta1, 1 - beta1);
// u_t = max(\beta_2*u_{t-1}, abs(g_t))
u->mulScalar(beta2);
g->abs2();
u->max2(*u, *g);
// \theta_t = \theta_{t-1} - (\alpha/(1-\beta_1^t))*m_t/u_t
g->dotDiv(*m, *u);
real learningRate = alpha / (1 - std::pow(beta1, step));
theta->add(*theta, 1.0, *g, -learningRate);
}