You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
2.2 KiB
63 lines
2.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename Place, typename T>
|
|
class MomentumOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
|
|
auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
|
|
auto param = ctx.Input<framework::Tensor>("Param");
|
|
auto velocity = ctx.Input<framework::Tensor>("Velocity");
|
|
auto grad = ctx.Input<framework::Tensor>("Grad");
|
|
auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
|
|
|
|
param_out->mutable_data<T>(ctx.GetPlace());
|
|
velocity_out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
float mu = ctx.Attr<float>("mu");
|
|
bool use_nesterov = ctx.Attr<bool>("useNesterov");
|
|
|
|
auto p_out = framework::EigenVector<T>::Flatten(*param_out);
|
|
auto v_out = framework::EigenVector<T>::Flatten(*velocity_out);
|
|
|
|
auto p = framework::EigenVector<T>::Flatten(*param);
|
|
auto v = framework::EigenVector<T>::Flatten(*velocity);
|
|
auto g = framework::EigenVector<T>::Flatten(*grad);
|
|
auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
|
|
|
|
auto place = ctx.GetEigenDevice<Place>();
|
|
|
|
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
|
|
|
|
v_out.device(place) = v * mu + g;
|
|
if (use_nesterov) {
|
|
p_out.device(place) = p - g * lr.broadcast(grad_dsize) +
|
|
v_out * mu * lr.broadcast(grad_dsize);
|
|
} else {
|
|
p_out.device(place) = p - lr.broadcast(grad_dsize) * v_out;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|