You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
268 lines
11 KiB
268 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/pool_with_index_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
|
|
int stride) {
|
|
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
|
return output_size;
|
|
}
|
|
|
|
class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"X(Input) of Pooling should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Out(Output) of Pooling should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Mask"),
|
|
"Mask(Output) of Pooling should not be null.");
|
|
|
|
auto in_x_dims = ctx->GetInputDim("X");
|
|
|
|
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
|
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
|
|
"Pooling intput should be 4-D or 5-D tensor.");
|
|
|
|
if (ctx->Attrs().Get<bool>("globalPooling")) {
|
|
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
|
|
}
|
|
}
|
|
|
|
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
|
|
"Input size and pooling size should be consistent.");
|
|
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
|
|
"Strides size and pooling size should be the same.");
|
|
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
|
|
"Paddings size and pooling size should be the same.");
|
|
|
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
|
|
paddings[i], strides[i]));
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
|
|
}
|
|
};
|
|
|
|
class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Input(X@GRAD) should not be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"X",
|
|
"(Tensor) The input tensor of pooling operator. "
|
|
"The format of input tensor is NCHW, where N is batch size, C is the "
|
|
"number of channels, H is the height of the image, "
|
|
"and W is the width of the image.");
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of pooling operator. "
|
|
"The format of output tensor is also NCHW, "
|
|
"where N is batch size, C is "
|
|
"the number of channels, H is the height of the image "
|
|
"and W is the width of the image.");
|
|
AddOutput("Mask",
|
|
"(Tensor) The Mask tensor of pooling operator."
|
|
"The format of output tensor is also NCHW, "
|
|
"where N is batch size, C is the number of channels, "
|
|
"H is the height of the image, "
|
|
"and W is the width of the image. "
|
|
"It represents the index in the current feature map.");
|
|
|
|
AddAttr<std::vector<int>>("ksize",
|
|
"(vector<int>) The pooling window size(height, "
|
|
"width) of pooling operator. "
|
|
"If globalPooling = true, ksize and paddings "
|
|
"will be ignored."); // TODO(Chengduo): Add
|
|
// checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
AddAttr<bool>(
|
|
"globalPooling",
|
|
"(bool, default false) Whether to use the global pooling. "
|
|
"If globalPooling = true, ksize and paddings will be ignored.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<int>>("strides",
|
|
"(vector<int>, default {1, 1}), strides(height, "
|
|
"width) of pooling operator.")
|
|
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
AddAttr<std::vector<int>>(
|
|
"paddings",
|
|
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
|
|
"operator. "
|
|
"If globalPooling = true, paddings and will be ignored.")
|
|
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddComment(R"DOC(
|
|
MaxPool2d Operator.
|
|
|
|
The maxPooling2d with index operation calculates the output and the mask
|
|
based on the input, ksize, strides, and paddings parameters. Input(X) and
|
|
output(Out, Mask) are in NCHW format, where N is batch size, C is the
|
|
number of channels, H is the height of the feature,
|
|
and W is the width of the feature.
|
|
Parameters(ksize, strides, paddings) are two elements.
|
|
These two elements represent height and width, respectively.
|
|
The input(X) size and output(Out, Mask) size may be different.
|
|
|
|
Example:
|
|
Input:
|
|
X shape: $(N, C, H_{in}, W_{in})$
|
|
Output:
|
|
Out shape: $(N, C, H_{out}, W_{out})$
|
|
Mask shape: $(N, C, H_{out}, W_{out})$
|
|
where
|
|
$$
|
|
H_{out} = (H_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
|
|
W_{out} = (W_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
|
$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(Tensor) The input tensor of pooling operator. "
|
|
"The format of input tensor is NCDHW, where N is batch size, C is "
|
|
"the number of channels, and D, H and W are the depth, height and "
|
|
"width of "
|
|
"the image, respectively");
|
|
AddOutput("Out",
|
|
"(Tensor) The output tensor of pooling operator. "
|
|
"The format of output tensor is also NCDHW, "
|
|
"where N is the batch size, C is the number of channels, "
|
|
"and D, H and W are the depth, height and "
|
|
"width of the image, respectively.");
|
|
AddOutput("Mask",
|
|
"(Tensor) The Mask tensor of pooling operator. "
|
|
"The format of output tensor is also NCDHW, "
|
|
"where N is the batch size, C is the number of channels, and "
|
|
"D, H and W are the depth, height and width "
|
|
"of the image, respectively. "
|
|
"It represents the index in the current feature map.");
|
|
|
|
AddAttr<std::vector<int>>("ksize",
|
|
"(vector<int>) The pooling window size(depth, "
|
|
"height, width) of pooling operator. "
|
|
"If globalPooling = true, ksize and paddings "
|
|
"will be ignored."); // TODO(Chengduo): Add
|
|
// checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
AddAttr<bool>(
|
|
"globalPooling",
|
|
"(bool, default false) Whether to use the global pooling. "
|
|
"If globalPooling = true, ksize and paddings will be ignored.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<int>>("strides",
|
|
"(vector<int>, default {1,1,1}), strides(depth, "
|
|
"height, width) of pooling operator.")
|
|
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
AddAttr<std::vector<int>>(
|
|
"paddings",
|
|
"(vector, defalut {0,0,0}), paddings(depth, "
|
|
"height, width) of pooling operator. "
|
|
"If globalPooling = true, paddings and ksize will be ignored.")
|
|
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
|
|
// TypedAttrChecker don't support vector type.)
|
|
|
|
AddComment(R"DOC(
|
|
MaxPool3d Operator.
|
|
|
|
The maxpooling3d with index operation calculates the output and the mask
|
|
based on the input and ksize, strides, paddings parameters.
|
|
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
|
|
size, C is the number of channels, and D, H and W are the depth, height and
|
|
width of the feature, respectively.
|
|
Parameters(ksize, strides, paddings) are three elements.
|
|
These three elements represent depth, height and width, respectively.
|
|
The input(X) size and output(Out, Mask) size may be different.
|
|
|
|
Example:
|
|
Input:
|
|
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
|
|
Output:
|
|
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
|
|
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
|
|
where
|
|
$$
|
|
D_{out} = (D_{in} - ksize[0] + 2 * paddings[0]) / strides[0] + 1 \\
|
|
H_{out} = (H_{in} - ksize[1] + 2 * paddings[1]) / strides[1] + 1 \\
|
|
W_{out} = (W_{in} - ksize[2] + 2 * paddings[2]) / strides[2] + 1
|
|
$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
|
|
ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
|
|
ops::MaxPoolWithIndexOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
max_pool2d_with_index,
|
|
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
max_pool2d_with_index_grad,
|
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)
|
|
|
|
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
|
|
ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
|
|
ops::MaxPoolWithIndexOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
max_pool3d_with_index,
|
|
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
max_pool3d_with_index_grad,
|
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)
|