You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.8 KiB
121 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/rmsprop_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class RmspropOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
|
"Input(Param) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("MeanSquare"),
|
|
"Input(MeanSquare) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
|
"Input(LearningRate) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
|
"Input(Grad) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Moment"),
|
|
"Input(Moment) of RmspropOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
|
"Output(param_out) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
|
|
"Output(Momentum_out) of RmspropOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"),
|
|
"Output(MeanSquareOut) of RmspropOp should not be null.");
|
|
|
|
auto param_dim = ctx->GetInputDim("Param");
|
|
PADDLE_ENFORCE_EQ(
|
|
param_dim, ctx->GetInputDim("Grad"),
|
|
"Param and grad input of RmspropOp should have the same dimension.");
|
|
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
|
|
"Param and Momentum input of RmspropOp "
|
|
"should have the same dimension.");
|
|
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
|
|
"Param and Momentum input of RmspropOp "
|
|
"should have the same dimension.");
|
|
|
|
auto lr_dim = ctx->GetInputDim("LearningRate");
|
|
PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
|
|
"Learning Rate should be a scalar.");
|
|
|
|
ctx->SetOutputDim("ParamOut", param_dim);
|
|
ctx->SetOutputDim("MomentOut", param_dim);
|
|
ctx->SetOutputDim("MeanSquareOut", param_dim);
|
|
}
|
|
};
|
|
|
|
class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
RmspropOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Param",
|
|
"(Tensor, default Tensor<float>) "
|
|
"Input parameter value that has to be updated.");
|
|
AddInput("MeanSquare",
|
|
"(Tensor, default Tensor<float>)"
|
|
" The mean square value that gets updated.");
|
|
AddInput("LearningRate",
|
|
"(Tensor, default Tensor<float>) "
|
|
"The learning rate should be a tensor of size 1.");
|
|
AddInput("Grad",
|
|
"(Tensor, default Tensor<float>) "
|
|
"Input gradient of the parameter.");
|
|
AddInput("Moment",
|
|
"(Tensor, default Tensor<float>) The moment that gets updated.");
|
|
|
|
AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
|
|
AddOutput("MomentOut", "(Tensor) Output updated moment.");
|
|
AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value.");
|
|
|
|
AddAttr<float>("epsilon",
|
|
"(float, default 1e-10) Constant "
|
|
"for numerical stability.")
|
|
.SetDefault(1.0e-10f);
|
|
AddAttr<float>("decay",
|
|
"(float, default 0.9) "
|
|
"Discounting factor for coming gradient.")
|
|
.SetDefault(0.9f);
|
|
AddAttr<float>("momentum", "(float, default 0.0) Constant value.")
|
|
.SetDefault(0.0f);
|
|
AddComment(R"DOC(
|
|
Rmsprop Optimizer.
|
|
|
|
$$
|
|
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad \\
|
|
MomentOut = momentum * Moment +
|
|
\frac{LearningRate * Grad}{\sqrt{MeanSquareOut + epsilon}} \\
|
|
ParamOut = Param - MomentOut
|
|
$$
|
|
|
|
The original slides that proposed Rmsprop: Slide 29 of
|
|
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(rmsprop,
|
|
ops::RmspropOpKernel<paddle::platform::CPUPlace, float>);
|