You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
7.8 KiB
186 lines
7.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/sequence_conv_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceConvOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SequenceConvOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Filter"),
|
|
"Input(Filter) of SequenceConvOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SequenceConvOp should not be null.");
|
|
|
|
int context_length = ctx->Attrs().Get<int>("contextLength");
|
|
int context_start = ctx->Attrs().Get<int>("contextStart");
|
|
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
auto filter_dims = ctx->GetInputDim("Filter");
|
|
PADDLE_ENFORCE(ctx->Attrs().Get<int>("contextStride") == 1,
|
|
"Currently, SequenceConvOp only supports contextStride=1.");
|
|
PADDLE_ENFORCE(in_dims.size() == 2 && filter_dims.size() == 2,
|
|
"Input(X, Filter) should be 2-D tensor.");
|
|
PADDLE_ENFORCE(filter_dims[0] == context_length * in_dims[1],
|
|
"Filter's height should be context_length * "
|
|
"input_hidden_size .");
|
|
|
|
if (ctx->Attrs().Get<bool>("paddingTrainable")) {
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput("PaddingData"),
|
|
"Input(PaddingData) of SequenceConvOp should not be null.");
|
|
framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
|
|
int up_pad = std::max(0, -context_start);
|
|
int down_pad = std::max(0, context_start + context_length - 1);
|
|
int total_pad = up_pad + down_pad;
|
|
int input_width = static_cast<int>(in_dims[1]);
|
|
|
|
if (context_start == 0 && context_length == 1) {
|
|
PADDLE_THROW(
|
|
"If context_start is 0 and context_length is 1, paddingTrainable "
|
|
"should be false.");
|
|
}
|
|
PADDLE_ENFORCE(padding_dim.size() == 2,
|
|
"Input(PaddingData) should be 2-D tensor.");
|
|
PADDLE_ENFORCE(
|
|
padding_dim[0] == total_pad && padding_dim[1] == input_width,
|
|
"Input(PaddingData)'s shape is not consistent with 'context_start' "
|
|
"and 'context_length'.");
|
|
}
|
|
|
|
in_dims[1] = filter_dims[1];
|
|
ctx->SetOutputDim("Out", in_dims);
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
};
|
|
|
|
class SequenceConvGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Gradient of output(Out) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "The input(X) should not be null.");
|
|
|
|
if (ctx->Attrs().Get<bool>("paddingTrainable") &&
|
|
ctx->HasOutput(framework::GradVarName("PaddingData"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("PaddingData"),
|
|
ctx->GetInputDim("PaddingData"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", framework::GradVarName("X"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Filter"),
|
|
ctx->GetInputDim("Filter"));
|
|
}
|
|
}
|
|
};
|
|
|
|
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SequenceConvOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput(
|
|
"X",
|
|
"(LoDTensor) the input(X) is a LodTensor, which supports "
|
|
"variable-time length input sequence. The underlying tensor in "
|
|
"this LoDTensor is a matrix with shape (T, N), where T is the "
|
|
"total time steps in this mini-batch and N is the input_hidden_size.");
|
|
AddInput("PaddingData",
|
|
"(Tensor, optional) the input(PaddingData) is an optional "
|
|
"parameter, and it is learnable. "
|
|
"This is a tensor with shape (P, N), where P is the "
|
|
"top_pad + bottom_pad, N is the input_hidden_size. In order to "
|
|
"ensure the equal length of sequence before and after "
|
|
"convolution, it is necessary to fill the top and bottom of each "
|
|
"sequence according to context_length, context_stride and "
|
|
"context_start")
|
|
.AsDispensable();
|
|
AddInput(
|
|
"Filter",
|
|
"(Tensor) the input(Filter) is an learnable parameter."
|
|
"This is a tensor with shape (K, M), where K is the "
|
|
"context_length * input_hidden_size, M is the output feature size.");
|
|
AddOutput(
|
|
"Out",
|
|
"(LoDTensor) the output(Out) is a LodTensor, which support "
|
|
"variable-time length output sequence. The underlying tensor in "
|
|
"this LoDTensor is a matrix with shape (T, M), where, T is the "
|
|
"total time steps in this mini-batch, M is the output feature size.");
|
|
|
|
AddAttr<bool>("paddingTrainable",
|
|
"(bool, default:false) the padding data of SequenceConvOp "
|
|
"is trainable or not.")
|
|
.SetDefault(false);
|
|
AddAttr<int>("contextLength",
|
|
"(int) the contextLength of SequenceConvOp is the "
|
|
"height of the convolution kernel.")
|
|
.GreaterThan(0);
|
|
AddAttr<int>("contextStart",
|
|
"(int, default:0) the contextStart of SequenceConvOp "
|
|
"represents the beginning of the convolution of the number of "
|
|
"rows of sequence, which can be negative. The negative number "
|
|
"means to pad contextStart time-steps of zeros or learnable "
|
|
"parameters at the beginning of each instance. The positive "
|
|
"number means to skip contextStart time-steps of each "
|
|
"instance.")
|
|
.SetDefault(0);
|
|
AddAttr<int>("contextStride",
|
|
"(int, default:1) the contextStride of SequenceConvOp "
|
|
"represents the stride length of convolution kernel. "
|
|
"Currently, SequenceConvOp only supports"
|
|
"contextStride=1.")
|
|
.SetDefault(1)
|
|
.GreaterThan(0);
|
|
|
|
AddComment(R"DOC(
|
|
Sequence Conv Operator.
|
|
|
|
SequenceConvOp performs convolution operation on features of contextLength
|
|
time-steps of each instance. The convolution operation calculates the output
|
|
based on the input, filter, strides and paddings parameters.
|
|
The size of each dimension of the parameters is checked during infer-shape.
|
|
In order to ensure the equal length of sequence before and after convolution,
|
|
it is necessary to fill the top and bottom of each sequence based on
|
|
context_length, context_stride and context_start.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
|
|
sequence_conv_grad, ops::SequenceConvGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_conv, ops::SequenceConvKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_conv_grad,
|
|
ops::SequenceConvGradKernel<paddle::platform::CPUPlace, float>);
|