You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
8.0 KiB
219 lines
8.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/framework/lod_tensor_array.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
class ArrayOpBase : public framework::OperatorBase {
|
|
public:
|
|
ArrayOpBase(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {}
|
|
|
|
protected:
|
|
size_t GetOffset(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const {
|
|
auto *i = scope.FindVar(Input("I"));
|
|
PADDLE_ENFORCE(i != nullptr, "I must be set");
|
|
auto &i_tensor = i->Get<framework::LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(i_tensor.numel(), 1);
|
|
size_t offset;
|
|
if (platform::is_gpu_place(i_tensor.place())) {
|
|
// FIXME: Avoid copy from GPU to CPU
|
|
framework::Tensor t;
|
|
t.CopyFrom(i_tensor, platform::CPUPlace(), dev_ctx);
|
|
dev_ctx.Wait();
|
|
offset = static_cast<size_t>(*t.data<int64_t>());
|
|
} else {
|
|
offset = static_cast<size_t>(*i_tensor.data<int64_t>());
|
|
}
|
|
return offset;
|
|
}
|
|
};
|
|
|
|
class WriteToArrayOp : public ArrayOpBase {
|
|
public:
|
|
WriteToArrayOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ArrayOpBase(type, inputs, outputs, attrs) {}
|
|
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto *x = scope.FindVar(Input("X"));
|
|
PADDLE_ENFORCE(x != nullptr, "X must be set");
|
|
auto &x_tensor = x->Get<framework::LoDTensor>();
|
|
size_t offset = GetOffset(scope, dev_ctx);
|
|
auto *out =
|
|
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensorArray>();
|
|
if (offset >= out->size()) {
|
|
out->resize(offset + 1);
|
|
}
|
|
auto *out_tensor = &out->at(offset);
|
|
out_tensor->CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx);
|
|
out_tensor->set_lod(x_tensor.lod());
|
|
}
|
|
};
|
|
|
|
class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
WriteToArrayOpProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(LoDTensor) the tensor will be written to tensor array");
|
|
AddInput(
|
|
"I",
|
|
"(Tensor) the subscript index in tensor array. The number of element "
|
|
"should be 1");
|
|
AddOutput("Out", "(TensorArray) the tensor array will be written");
|
|
AddComment(R"DOC(Write a LoDTensor to a LoDTensor array.
|
|
|
|
Assume T is LoDTensor, i is the subscript of the array, and A is the array. The
|
|
equation is
|
|
|
|
A[i] = T
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class WriteToArrayInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index");
|
|
PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1,
|
|
"The number of element of subscript index must be 1");
|
|
PADDLE_ENFORCE(context->HasInput("X"), NotHasXError());
|
|
PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError());
|
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
virtual const char *NotHasXError() const { return "Must set the lod tensor"; }
|
|
|
|
virtual const char *NotHasOutError() const {
|
|
return "Must set the lod tensor array";
|
|
}
|
|
};
|
|
|
|
class WriteToArrayInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDescBind &op_desc,
|
|
framework::BlockDescBind *block) const override {
|
|
for (auto &out_var : op_desc.OutputArgumentNames()) {
|
|
VLOG(10) << "Set Variable " << out_var << " as LOD_TENSOR_ARRAY";
|
|
block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReadFromArrayOp : public ArrayOpBase {
|
|
public:
|
|
ReadFromArrayOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ArrayOpBase(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto *x = scope.FindVar(Input("X"));
|
|
PADDLE_ENFORCE(x != nullptr, "X must be set");
|
|
auto &x_array = x->Get<framework::LoDTensorArray>();
|
|
auto *out = scope.FindVar(Output("Out"));
|
|
PADDLE_ENFORCE(out != nullptr, "Out must be set");
|
|
auto *out_tesnor = out->GetMutable<framework::LoDTensor>();
|
|
size_t offset = GetOffset(scope, dev_ctx);
|
|
PADDLE_ENFORCE_LT(offset, x_array.size());
|
|
out_tesnor->CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx);
|
|
out_tesnor->set_lod(x_array[offset].lod());
|
|
}
|
|
};
|
|
|
|
class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ReadFromArrayProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(TensorArray) the array will be read from.");
|
|
AddInput("I",
|
|
"(Tensor) the subscript index in tensor array. The number of "
|
|
"element should be 1");
|
|
AddOutput("Out", "(LoDTensor) the tensor will be read from.");
|
|
AddComment(R"DOC(Read a LoDTensor from a LoDTensor Array
|
|
|
|
Assume T is LoDTensor, i is th e subscript of the array, and A is the array. The
|
|
equation is
|
|
|
|
T = A[i]
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ReadFromArrayInferShape : public WriteToArrayInferShape {
|
|
protected:
|
|
const char *NotHasXError() const override {
|
|
return "The input array X must be set";
|
|
}
|
|
const char *NotHasOutError() const override {
|
|
return "The output tensor out must be set";
|
|
}
|
|
};
|
|
|
|
class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDescBind> Apply() const override {
|
|
auto *grad_op = new framework::OpDescBind();
|
|
grad_op->SetType("read_from_array");
|
|
grad_op->SetInput("I", Input("I"));
|
|
grad_op->SetInput("X", OutputGrad("Out"));
|
|
grad_op->SetOutput("Out", InputGrad("X"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDescBind>(grad_op);
|
|
}
|
|
};
|
|
|
|
class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDescBind> Apply() const override {
|
|
auto *grad_op = new framework::OpDescBind();
|
|
grad_op->SetType("write_to_array");
|
|
grad_op->SetInput("I", Input("I"));
|
|
grad_op->SetInput("X", OutputGrad("Out"));
|
|
grad_op->SetOutput("Out", InputGrad("X"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDescBind>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(write_to_array, ops::WriteToArrayOp,
|
|
ops::WriteToArrayInferShape, ops::WriteToArrayOpProtoMaker,
|
|
ops::WriteToArrayGradMaker, ops::WriteToArrayInferVarType);
|
|
REGISTER_OPERATOR(read_from_array, ops::ReadFromArrayOp,
|
|
ops::ReadFromArrayInferShape, ops::ReadFromArrayProtoMaker,
|
|
ops::ReadFromArrayGradMaker);
|