You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
13 KiB
335 lines
13 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/details/reduce_op_handle.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/framework/details/container_cast.h"
|
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
|
#include "paddle/fluid/framework/details/variable_visitor.h"
|
|
#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
|
|
#include "paddle/fluid/operators/distributed/collective_client.h"
|
|
#include "paddle/fluid/operators/distributed/collective_server.h"
|
|
#include "paddle/fluid/operators/distributed/request_handler.h"
|
|
#endif
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
DEFINE_bool(
|
|
cpu_deterministic, false,
|
|
"Whether to make the result of computation deterministic in CPU side.");
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
std::once_flag CollectiveContext::init_flag_;
|
|
std::unique_ptr<CollectiveContext> CollectiveContext::context_;
|
|
|
|
static inline std::string GetRemoteVarName(const std::string &var_name,
|
|
int trainer_id) {
|
|
return string::Sprintf("%s_merged_tmp@trainer_%d", var_name, trainer_id);
|
|
}
|
|
|
|
void ReduceOpHandle::Wait(
|
|
const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes) {
|
|
// TODO(gongwb): use event wait?
|
|
for (auto &dev_ctx : dev_ctxes) {
|
|
dev_ctx.second->Wait();
|
|
}
|
|
}
|
|
|
|
#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
|
|
template <typename DevCtx, typename DataType>
|
|
void ReduceOpHandle::GatherSelectedRows(
|
|
const std::vector<const SelectedRows *> &src_selected_rows,
|
|
const std::vector<platform::Place> &in_places,
|
|
const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes,
|
|
VarHandle *out_var_handle, const platform::Place &out_place,
|
|
SelectedRows *dst_selected_rows) {
|
|
const CollectiveContext &collective_context =
|
|
*CollectiveContext::GetInstance();
|
|
|
|
// 1. gather local selected rows, merge them
|
|
std::string gathered_var_name = out_var_handle->name() + "_gathered_tmp";
|
|
auto scope = local_scopes_.at(out_var_handle->scope_idx());
|
|
auto gathered_var_mid = scope->Var(gathered_var_name);
|
|
auto gathered_select_rows =
|
|
gathered_var_mid->GetMutable<framework::SelectedRows>();
|
|
GatherLocalSelectedRowsFunctor functor(
|
|
src_selected_rows, in_places, dev_ctxes, out_place, gathered_select_rows);
|
|
WaitInputVarGenerated();
|
|
functor();
|
|
|
|
// FIXME(gongwb): remove this Wait.
|
|
Wait(dev_ctxes);
|
|
|
|
// merge them
|
|
auto merged_dev_ctx = dynamic_cast<DevCtx *>(dev_ctxes.at(out_place));
|
|
std::string merged_var_name =
|
|
GetRemoteVarName(out_var_handle->name(), collective_context.trainer_id_);
|
|
auto merged_select_rows =
|
|
scope->Var(merged_var_name)->GetMutable<SelectedRows>();
|
|
operators::math::scatter::MergeAdd<DevCtx, DataType> merge_func;
|
|
merge_func(*merged_dev_ctx, *gathered_select_rows, merged_select_rows);
|
|
|
|
// 2. start collective server if it doesn't exist
|
|
operators::distributed::CollectiveServer *server =
|
|
operators::distributed::CollectiveServer::GetInstance(
|
|
collective_context.endpoints_[collective_context.trainer_id_],
|
|
collective_context.endpoints_.size() - 1);
|
|
|
|
auto rpc_server = server->GetRPCServer();
|
|
rpc_server->RegisterVar(merged_var_name,
|
|
operators::distributed::kRequestGetMonomerVariable,
|
|
scope, merged_dev_ctx);
|
|
|
|
// 3. gather them from all remote nodes.
|
|
std::vector<const SelectedRows *> remote;
|
|
operators::distributed::CollectiveClient *client =
|
|
operators::distributed::CollectiveClient::GetInstance();
|
|
|
|
std::vector<operators::distributed::RemoteVar> vars;
|
|
for (unsigned int i = 0; i < collective_context.endpoints_.size(); i++) {
|
|
if (i == (unsigned)collective_context.trainer_id_) continue;
|
|
|
|
operators::distributed::RemoteVar var;
|
|
var.trainer_id_ = i;
|
|
var.var_name_ = GetRemoteVarName(out_var_handle->name(), i);
|
|
var.ep_ = collective_context.endpoints_[i];
|
|
|
|
vars.push_back(var);
|
|
VLOG(4) << "gather from:" << var.String();
|
|
}
|
|
|
|
// erase gathered vars
|
|
merged_dev_ctx->Wait();
|
|
scope->EraseVars(std::vector<std::string>{gathered_var_name});
|
|
|
|
PADDLE_ENFORCE(client->Gather(vars, &remote, *merged_dev_ctx, scope));
|
|
PADDLE_ENFORCE(remote.size() == vars.size());
|
|
|
|
// 4. merged local selected rows.
|
|
std::vector<const SelectedRows *> all;
|
|
all.resize(collective_context.endpoints_.size());
|
|
for (auto v : vars) {
|
|
all[v.trainer_id_] =
|
|
scope->FindVar(v.var_name_)->GetMutable<SelectedRows>();
|
|
}
|
|
all[collective_context.trainer_id_] = merged_select_rows;
|
|
|
|
merge_func(*merged_dev_ctx, all, dst_selected_rows);
|
|
|
|
rpc_server->WaitVarBarrier(merged_var_name);
|
|
rpc_server->ClearVar(merged_var_name);
|
|
|
|
// 5. clear mid vars
|
|
std::vector<std::string> tmp_vars{merged_var_name};
|
|
for (auto r : vars) {
|
|
tmp_vars.push_back(r.var_name_);
|
|
}
|
|
scope->EraseVars(tmp_vars);
|
|
}
|
|
#endif
|
|
|
|
void ReduceOpHandle::RunImpl() {
|
|
platform::RecordEvent record_event(Name());
|
|
|
|
if (places_.size() == 1) return;
|
|
// the input and output may have dummy var.
|
|
auto in_var_handles = DynamicCast<VarHandle>(inputs_);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_var_handles.size(), places_.size(),
|
|
"The number of output should equal to the number of places.");
|
|
|
|
VarHandle *out_var_handle;
|
|
{
|
|
auto out_var_handles = DynamicCast<VarHandle>(outputs_);
|
|
|
|
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1UL,
|
|
"The number of output should be one.");
|
|
out_var_handle = out_var_handles.front();
|
|
}
|
|
|
|
auto in_0_handle = in_var_handles[0];
|
|
|
|
auto &var_scopes = local_exec_scopes_;
|
|
|
|
auto pre_in_var =
|
|
var_scopes.at(in_0_handle->scope_idx())->FindVar(in_0_handle->name());
|
|
PADDLE_ENFORCE_NOT_NULL(pre_in_var);
|
|
|
|
// NOTE: The Places of all input tensor must be all on CPU or all on GPU.
|
|
std::vector<platform::Place> in_places; // used to get dev_ctx
|
|
for (auto *in_handle : in_var_handles) {
|
|
in_places.emplace_back(in_handle->place());
|
|
auto in_var =
|
|
var_scopes.at(in_handle->scope_idx())->FindVar(in_handle->name());
|
|
PADDLE_ENFORCE_NOT_NULL(in_var);
|
|
VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var);
|
|
}
|
|
|
|
auto out_var = var_scopes.at(out_var_handle->scope_idx())
|
|
->FindVar(out_var_handle->name());
|
|
PADDLE_ENFORCE_NOT_NULL(out_var);
|
|
|
|
// NOTE: The tensors' Place of input and output must be all on GPU or all on
|
|
// CPU.
|
|
auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place();
|
|
platform::Place t_out_p;
|
|
if (platform::is_gpu_place(in_p)) {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place()),
|
|
"Places of input and output must be all on GPU.");
|
|
t_out_p = out_var_handle->place();
|
|
} else {
|
|
t_out_p = platform::CPUPlace();
|
|
}
|
|
|
|
if (pre_in_var->IsType<framework::SelectedRows>()) {
|
|
this->RunAndRecordEvent([&] {
|
|
std::vector<const SelectedRows *> in_selected_rows =
|
|
GetInputValues<SelectedRows>(in_var_handles, var_scopes);
|
|
|
|
const CollectiveContext &collective_context =
|
|
*CollectiveContext::GetInstance();
|
|
VLOG(10) << "GatherSelectedRows CollectiveContext:"
|
|
<< collective_context.String();
|
|
|
|
// TODO(gongwb): add cpu support
|
|
if (collective_context.endpoints_.size() <= 1 ||
|
|
is_cpu_place(in_places[0]) || is_cpu_place(t_out_p)) {
|
|
GatherLocalSelectedRowsFunctor functor(
|
|
in_selected_rows, in_places, dev_ctxes_, t_out_p,
|
|
out_var->GetMutable<framework::SelectedRows>());
|
|
WaitInputVarGenerated();
|
|
functor();
|
|
return;
|
|
}
|
|
|
|
#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
|
|
if (in_selected_rows[0]->value().type() ==
|
|
framework::proto::VarType::FP32) {
|
|
GatherSelectedRows<platform::CUDADeviceContext, float>(
|
|
in_selected_rows, in_places, dev_ctxes_, out_var_handle, t_out_p,
|
|
out_var->GetMutable<framework::SelectedRows>());
|
|
} else if (in_selected_rows[0]->value().type() ==
|
|
framework::proto::VarType::FP64) {
|
|
GatherSelectedRows<platform::CUDADeviceContext, double>(
|
|
in_selected_rows, in_places, dev_ctxes_, out_var_handle, t_out_p,
|
|
out_var->GetMutable<framework::SelectedRows>());
|
|
} else {
|
|
PADDLE_THROW("only support double or float when gather SelectedRows");
|
|
}
|
|
#endif
|
|
});
|
|
} else {
|
|
std::vector<const LoDTensor *> lod_tensors =
|
|
GetInputValues<LoDTensor>(in_var_handles, var_scopes);
|
|
|
|
if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) {
|
|
WaitInputVarGenerated();
|
|
this->RunAndRecordEvent([&] {
|
|
// FIXME(zcd): The order of summing is important,
|
|
// especially when the type of data is float or double.
|
|
// For example, the result of `a+b+c+d` may be different
|
|
// with the result of `c+a+b+d`, so the summing order should be fixed.
|
|
if (!FLAGS_cpu_deterministic) {
|
|
ReduceLoDTensor func(lod_tensors,
|
|
out_var->GetMutable<framework::LoDTensor>());
|
|
VisitDataType(lod_tensors[0]->type(), func);
|
|
} else {
|
|
// We sum lod_tensors to reduce_sum_trg which is in local_scopes_0
|
|
// here, but it doesn't mean reduce_sum_trg must be in local_scopes_0.
|
|
auto &reduce_sum_trg = *this->local_exec_scopes_[0]
|
|
->FindVar(out_var_handle->name())
|
|
->GetMutable<framework::LoDTensor>();
|
|
ReduceLoDTensor func(lod_tensors, &reduce_sum_trg);
|
|
VisitDataType(lod_tensors[0]->type(), func);
|
|
|
|
auto trg = out_var->GetMutable<framework::LoDTensor>();
|
|
if (reduce_sum_trg.data<void>() != trg->data<void>()) {
|
|
TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg);
|
|
}
|
|
}
|
|
});
|
|
} else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
|
|
#if defined(PADDLE_WITH_NCCL)
|
|
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
|
|
VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
|
|
VariableVisitor::GetMutableTensor(out_var).mutable_data(
|
|
out_var_handle->place(), pre_in.type());
|
|
|
|
auto out_p = out_var_handle->place();
|
|
int root_id = BOOST_GET_CONST(platform::CUDAPlace, out_p).device;
|
|
std::vector<std::function<void()>> all_reduce_calls;
|
|
for (size_t i = 0; i < var_scopes.size(); ++i) {
|
|
auto &p = in_places[i];
|
|
auto &lod_tensor = *lod_tensors[i];
|
|
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, p).device;
|
|
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
|
|
|
|
void *buffer = const_cast<void *>(lod_tensor.data<void>());
|
|
void *recvbuffer = nullptr;
|
|
if (root_id == dev_id) {
|
|
recvbuffer =
|
|
out_var->GetMutable<framework::LoDTensor>()->mutable_data(
|
|
out_var_handle->place());
|
|
}
|
|
|
|
int type = platform::ToNCCLDataType(lod_tensor.type());
|
|
size_t numel = static_cast<size_t>(lod_tensor.numel());
|
|
all_reduce_calls.emplace_back(
|
|
[buffer, recvbuffer, type, numel, root_id, &nccl_ctx] {
|
|
PADDLE_ENFORCE(platform::dynload::ncclReduce(
|
|
buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type),
|
|
ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream()));
|
|
});
|
|
}
|
|
|
|
WaitInputVarGenerated();
|
|
this->RunAndRecordEvent([&] {
|
|
platform::NCCLGroupGuard guard;
|
|
for (auto &call : all_reduce_calls) {
|
|
call();
|
|
}
|
|
});
|
|
#else
|
|
PADDLE_THROW("CUDA is not enabled.");
|
|
#endif
|
|
} else {
|
|
PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<const T *> ReduceOpHandle::GetInputValues(
|
|
const std::vector<VarHandle *> &in_var_handles,
|
|
const std::vector<Scope *> &var_scopes) const {
|
|
std::vector<const T *> in_selected_rows;
|
|
for (auto *in_handle : in_var_handles) {
|
|
auto &in_sr = var_scopes.at(in_handle->scope_idx())
|
|
->FindVar(in_handle->name())
|
|
->Get<T>();
|
|
in_selected_rows.emplace_back(&in_sr);
|
|
}
|
|
return in_selected_rows;
|
|
}
|
|
|
|
std::string ReduceOpHandle::Name() const { return "reduce"; }
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|