You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
5.5 KiB
173 lines
5.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
class ElementwiseMulOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
|
|
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
|
|
|
|
|
|
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 4).astype(np.float32),
|
|
'Y': np.random.rand(1).astype(np.float32)
|
|
}
|
|
self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
|
|
|
|
|
|
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.random((32, )).astype("float64"),
|
|
'Y': np.random.random((32, )).astype("float64")
|
|
}
|
|
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 4).astype(np.float64),
|
|
'Y': np.random.rand(2).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 0}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
|
|
}
|
|
|
|
|
|
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 4).astype(np.float64),
|
|
'Y': np.random.rand(3).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
|
|
}
|
|
|
|
|
|
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 4).astype(np.float64),
|
|
'Y': np.random.rand(4).astype(np.float64)
|
|
}
|
|
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
|
|
}
|
|
|
|
|
|
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
|
|
def setUp(self):
|
|
self.op_type = "elementwise_mul"
|
|
self.inputs = {
|
|
'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
|
|
'Y': np.random.rand(3, 4).astype(np.float64)
|
|
}
|
|
|
|
self.attrs = {'axis': 1}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
|
|
}
|
|
|
|
|
|
class TestElementWiseMulSelectedRows(OpTest):
|
|
def setUp(self):
|
|
self.rows = [0, 1, 2, 3, 4, 5, 6]
|
|
self.feature = 12
|
|
self.height = 100
|
|
self.input_shape = (len(self.rows), self.feature)
|
|
|
|
def prepare_input(self, scope, place):
|
|
self.input = {
|
|
"X": np.random.random(self.input_shape).astype("float32"),
|
|
"Y": np.random.random(self.input_shape).astype("float32")
|
|
}
|
|
|
|
def init_input(in_name):
|
|
x_selected_rows = scope.var(in_name).get_selected_rows()
|
|
x_selected_rows.set_height(self.height)
|
|
x_selected_rows.set_rows(self.rows)
|
|
x_array = self.input[in_name]
|
|
x_tensor = x_selected_rows.get_tensor()
|
|
x_tensor.set(x_array, place)
|
|
|
|
init_input("X")
|
|
init_input("Y")
|
|
|
|
def create_out_selected_row(self, scope):
|
|
return scope.var('Out').get_selected_rows()
|
|
|
|
def check_result(self, out_selected_rows):
|
|
assert out_selected_rows.height() == self.height
|
|
assert out_selected_rows.rows() == self.rows
|
|
out_tensor = np.array(out_selected_rows.get_tensor())
|
|
assert out_tensor.shape == self.input_shape
|
|
|
|
def check_with_place(self, place):
|
|
scope = core.Scope()
|
|
self.prepare_input(scope, place)
|
|
|
|
out_selected_rows = self.create_out_selected_row(scope)
|
|
out_selected_rows.set_height(0)
|
|
out_selected_rows.set_rows([])
|
|
|
|
elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out')
|
|
elementwise_mul.run(scope, place)
|
|
self.check_result(out_selected_rows)
|
|
|
|
def test_elewisemul_with_selected_rows_input(self):
|
|
places = [core.CPUPlace()]
|
|
for place in places:
|
|
self.check_with_place(place)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|