You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
4.7 KiB
143 lines
4.7 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <time.h>
|
|
#include <sstream>
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/inference/io.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
|
|
template <typename Place, typename T>
|
|
void TestInference(const std::string& dirname,
|
|
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
|
|
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
|
|
// 1. Define place, executor and scope
|
|
auto place = Place();
|
|
auto executor = paddle::framework::Executor(place);
|
|
auto* scope = new paddle::framework::Scope();
|
|
|
|
// 2. Initialize the inference_program and load all parameters from file
|
|
auto inference_program = paddle::inference::Load(executor, *scope, dirname);
|
|
|
|
// 3. Get the feed_target_names and fetch_target_names
|
|
const std::vector<std::string>& feed_target_names =
|
|
inference_program->GetFeedTargetNames();
|
|
const std::vector<std::string>& fetch_target_names =
|
|
inference_program->GetFetchTargetNames();
|
|
|
|
// 4. Prepare inputs: set up maps for feed targets
|
|
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
|
|
for (size_t i = 0; i < feed_target_names.size(); ++i) {
|
|
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
|
|
feed_targets[feed_target_names[i]] = cpu_feeds[i];
|
|
}
|
|
|
|
// 5. Define Tensor to get the outputs: set up maps for fetch targets
|
|
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
|
|
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
|
|
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
|
|
}
|
|
|
|
// 6. Run the inference program
|
|
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
|
|
|
|
delete scope;
|
|
}
|
|
|
|
template <typename T>
|
|
void SetupTensor(paddle::framework::LoDTensor& input,
|
|
paddle::framework::DDim dims,
|
|
T lower,
|
|
T upper) {
|
|
srand(time(0));
|
|
float* input_ptr = input.mutable_data<T>(dims, paddle::platform::CPUPlace());
|
|
for (int i = 0; i < input.numel(); ++i) {
|
|
input_ptr[i] =
|
|
(static_cast<T>(rand()) / static_cast<T>(RAND_MAX)) * (upper - lower) +
|
|
lower;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void CheckError(paddle::framework::LoDTensor& output1,
|
|
paddle::framework::LoDTensor& output2) {
|
|
// Check lod information
|
|
EXPECT_EQ(output1.lod(), output2.lod());
|
|
|
|
EXPECT_EQ(output1.dims(), output2.dims());
|
|
EXPECT_EQ(output1.numel(), output2.numel());
|
|
|
|
T err = static_cast<T>(0);
|
|
if (typeid(T) == typeid(float)) {
|
|
err = 1E-3;
|
|
} else if (typeid(T) == typeid(double)) {
|
|
err = 1E-6;
|
|
} else {
|
|
err = 0;
|
|
}
|
|
|
|
size_t count = 0;
|
|
for (int64_t i = 0; i < output1.numel(); ++i) {
|
|
if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
|
|
count++;
|
|
}
|
|
}
|
|
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
|
|
}
|
|
|
|
TEST(inference, recognize_digits) {
|
|
if (FLAGS_dirname.empty()) {
|
|
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
|
}
|
|
|
|
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
std::string dirname = FLAGS_dirname;
|
|
|
|
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
|
|
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
|
|
|
|
paddle::framework::LoDTensor input;
|
|
// Use normilized image pixels as input data,
|
|
// which should be in the range [-1.0, 1.0].
|
|
SetupTensor<float>(
|
|
input, {1, 28, 28}, static_cast<float>(-1), static_cast<float>(1));
|
|
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
|
cpu_feeds.push_back(&input);
|
|
|
|
paddle::framework::LoDTensor output1;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
// Run inference on CPU
|
|
TestInference<paddle::platform::CPUPlace, float>(
|
|
dirname, cpu_feeds, cpu_fetchs1);
|
|
LOG(INFO) << output1.dims();
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
paddle::framework::LoDTensor output2;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
|
|
cpu_fetchs2.push_back(&output2);
|
|
|
|
// Run inference on CUDA GPU
|
|
TestInference<paddle::platform::CUDAPlace, float>(
|
|
dirname, cpu_feeds, cpu_fetchs2);
|
|
LOG(INFO) << output2.dims();
|
|
|
|
CheckError<float>(output1, output2);
|
|
#endif
|
|
}
|