You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/lamb_optimizer.py

114 lines
4.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.optimizer import LambOptimizer as LAMB
from .meta_optimizer_base import MetaOptimizerBase
import logging
class LambOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(LambOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
self.lamb_opt = None
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = ["GraphExecutionOptimizer"]
self.meta_optimizers_black_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(LambOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
opt = self.inner_opt
if not isinstance(opt, AdamOptimizer):
return
configs = self.user_defined_strategy.lamb_configs
if len(configs['exclude_from_weight_decay']) == 0:
_exclude_from_weight_decay_fn = None
else:
def exclude_fn(param):
exclude_list = configs['exclude_from_weight_decay']
for name in exclude_list:
if param.name.endswith(name):
return True
return False
_exclude_from_weight_decay_fn = exclude_fn
self.lamb_opt = LAMB(
learning_rate=opt._learning_rate,
lamb_weight_decay=configs['lamb_weight_decay'],
beta1=opt._beta1,
beta2=opt._beta2,
epsilon=opt._epsilon,
parameter_list=opt._parameter_list,
regularization=opt.regularization,
grad_clip=opt._grad_clip,
exclude_from_weight_decay_fn=_exclude_from_weight_decay_fn,
name=opt._name)
def _can_apply(self):
if not self.role_maker._is_collective:
return False
if self.user_defined_strategy.lamb:
if not isinstance(self.inner_opt, AdamOptimizer):
logging.warn(
"lamb need the inner optimizer to be AdamOptimizer optimizer but got {}.".
format(self.inner_opt.type))
return False
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.lamb = False
dist_strategy.lamb_configs = {}
def _enable_strategy(self, dist_strategy, context):
dist_strategy.lamb = True
dist_strategy.lamb_configs = {
"lamb_weight_decay": 0.01,
"exclude_from_weight_decay": []
}
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.lamb_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
# the following function will be used by AMP if both LARS and AMP are turn on together.
def apply_gradients(self, params_grads):
return self.lamb_opt.apply_gradients(params_grads=params_grads)
def apply_optimize(self, loss, startup_program, params_grads):
return self.lamb_opt.apply_optimize(
loss, startup_program=startup_program, params_grads=params_grads)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads = \
self.lamb_opt.minimize(loss, startup_program,
parameter_list, no_grad_set)
return optimize_ops, params_grads