You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.8 KiB
101 lines
3.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
from paddle.fluid.optimizer import Momentum, LarsMomentumOptimizer
|
|
from .meta_optimizer_base import MetaOptimizerBase
|
|
import logging
|
|
|
|
|
|
class LarsOptimizer(MetaOptimizerBase):
|
|
def __init__(self, optimizer):
|
|
super(LarsOptimizer, self).__init__(optimizer)
|
|
self.inner_opt = optimizer
|
|
self.lars_opt = None
|
|
# we do not allow meta optimizer to be inner optimizer currently
|
|
self.meta_optimizers_white_list = ["GraphExecutionOptimizer"]
|
|
self.meta_optimizers_black_list = []
|
|
|
|
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
|
|
user_defined_strategy):
|
|
super(LarsOptimizer, self)._set_basic_info(
|
|
loss, role_maker, user_defined_optimizer, user_defined_strategy)
|
|
|
|
opt = self.inner_opt
|
|
if not isinstance(opt, Momentum):
|
|
return
|
|
|
|
configs = self.user_defined_strategy.lars_configs
|
|
|
|
self.lars_opt = LarsMomentumOptimizer(
|
|
learning_rate=opt._learning_rate,
|
|
momentum=opt._momentum,
|
|
lars_coeff=configs['lars_coeff'],
|
|
lars_weight_decay=configs['lars_weight_decay'],
|
|
parameter_list=opt._parameter_list,
|
|
regularization=opt.regularization,
|
|
grad_clip=opt._grad_clip,
|
|
name=opt._name,
|
|
exclude_from_weight_decay=configs['exclude_from_weight_decay'],
|
|
epsilon=configs['epsilon'])
|
|
|
|
def _can_apply(self):
|
|
if not self.role_maker._is_collective:
|
|
return False
|
|
|
|
if self.user_defined_strategy.lars:
|
|
if not isinstance(self.inner_opt, Momentum):
|
|
logging.warn(
|
|
"lars need the inner optimizer to be Momentum optimizer but got {}.".
|
|
format(self.inner_opt.type))
|
|
return False
|
|
return True
|
|
return False
|
|
|
|
def _disable_strategy(self, dist_strategy):
|
|
dist_strategy.lars = False
|
|
dist_strategy.lars_configs = {}
|
|
|
|
def _enable_strategy(self, dist_strategy, context):
|
|
dist_strategy.lars = True
|
|
dist_strategy.lars_configs = {
|
|
"lars_coeff": 0.01,
|
|
"lars_weight_decay": 0.0005,
|
|
}
|
|
|
|
def backward(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None,
|
|
callbacks=None):
|
|
return self.lars_opt.backward(loss, startup_program, parameter_list,
|
|
no_grad_set, callbacks)
|
|
|
|
# the following function will be used by AMP if both LARS and AMP are turn on together.
|
|
def apply_gradients(self, params_grads):
|
|
return self.lars_opt.apply_gradients(params_grads=params_grads)
|
|
|
|
def apply_optimize(self, loss, startup_program, params_grads):
|
|
return self.lars_opt.apply_optimize(
|
|
loss, startup_program=startup_program, params_grads=params_grads)
|
|
|
|
def minimize_impl(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
optimize_ops, params_grads = \
|
|
self.lars_opt.minimize(loss, startup_program,
|
|
parameter_list, no_grad_set)
|
|
return optimize_ops, params_grads
|