You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
3.2 KiB
114 lines
3.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import Program, program_guard
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestClipOp(OpTest):
|
|
def setUp(self):
|
|
self.max_relative_error = 0.006
|
|
|
|
self.inputs = {}
|
|
self.initTestCase()
|
|
|
|
self.op_type = "clip"
|
|
self.attrs = {}
|
|
self.attrs['min'] = self.min
|
|
self.attrs['max'] = self.max
|
|
if 'Min' in self.inputs:
|
|
min_v = self.inputs['Min']
|
|
else:
|
|
min_v = self.attrs['min']
|
|
|
|
if 'Max' in self.inputs:
|
|
max_v = self.inputs['Max']
|
|
else:
|
|
max_v = self.attrs['max']
|
|
|
|
input = np.random.random(self.shape).astype("float32")
|
|
input[np.abs(input - min_v) < self.max_relative_error] = 0.5
|
|
input[np.abs(input - max_v) < self.max_relative_error] = 0.5
|
|
self.inputs['X'] = input
|
|
self.outputs = {'Out': np.clip(self.inputs['X'], min_v, max_v)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
def initTestCase(self):
|
|
self.shape = (4, 10, 10)
|
|
self.max = 0.8
|
|
self.min = 0.3
|
|
self.inputs['Max'] = np.array([0.8]).astype('float32')
|
|
self.inputs['Min'] = np.array([0.1]).astype('float32')
|
|
|
|
|
|
class TestCase1(TestClipOp):
|
|
def initTestCase(self):
|
|
self.shape = (8, 16, 8)
|
|
self.max = 0.7
|
|
self.min = 0.0
|
|
|
|
|
|
class TestCase2(TestClipOp):
|
|
def initTestCase(self):
|
|
self.shape = (8, 16)
|
|
self.max = 1.0
|
|
self.min = 0.0
|
|
|
|
|
|
class TestCase3(TestClipOp):
|
|
def initTestCase(self):
|
|
self.shape = (4, 8, 16)
|
|
self.max = 0.7
|
|
self.min = 0.2
|
|
|
|
|
|
class TestCase4(TestClipOp):
|
|
def initTestCase(self):
|
|
self.shape = (4, 8, 8)
|
|
self.max = 0.7
|
|
self.min = 0.2
|
|
self.inputs['Max'] = np.array([0.8]).astype('float32')
|
|
self.inputs['Min'] = np.array([0.3]).astype('float32')
|
|
|
|
|
|
class TestClipOpError(unittest.TestCase):
|
|
def test_errors(self):
|
|
with program_guard(Program(), Program()):
|
|
input_data = np.random.random((2, 4)).astype("float32")
|
|
|
|
def test_Variable():
|
|
fluid.layers.clip(x=input_data, min=-1.0, max=1.0)
|
|
|
|
self.assertRaises(TypeError, test_Variable)
|
|
|
|
def test_dtype():
|
|
x2 = fluid.layers.data(name='x2', shape=[1], dtype='int32')
|
|
fluid.layers.clip(x=x2, min=-1.0, max=1.0)
|
|
|
|
self.assertRaises(TypeError, test_dtype)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|