You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.4 KiB
70 lines
2.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/accuracy_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
__global__ void AccuracySingleKernel(const int N, const int D, const int top_k,
|
|
const int* Xdata, const int* labelData,
|
|
float* accuracy) {
|
|
int correct = 0;
|
|
for (int row = 0; row < N; row++) {
|
|
const int label = labelData[row];
|
|
for (int col = 0; col < D; col++) {
|
|
const int pred = Xdata[row * D + col];
|
|
if (pred == label) {
|
|
++correct;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*accuracy = static_cast<float>(correct) / static_cast<float>(N);
|
|
}
|
|
|
|
template <typename T>
|
|
class AccuracyOpCUDAKernel : public framework::OpKernel {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use GPUPlace.");
|
|
auto* inference = ctx.Input<Tensor>("Inference");
|
|
auto* label = ctx.Input<Tensor>("Label");
|
|
auto* accuracy = ctx.Output<Tensor>("Accuracy");
|
|
// FIXME(typhoonzero): only support indices currently
|
|
// if add support for output values, how to detect the data type?
|
|
const int* inference_data = inference->data<int>();
|
|
const int* label_data = label->data<int>();
|
|
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
|
|
|
|
size_t num_samples = inference->dims()[0];
|
|
size_t infer_width = inference->dims()[1];
|
|
cudaMemset((void**)&accuracy_data, 0, sizeof(float));
|
|
|
|
if (num_samples == 0) {
|
|
return;
|
|
}
|
|
|
|
AccuracySingleKernel<<<1, 1>>>(num_samples, infer_width, 1, inference_data,
|
|
label_data, accuracy_data);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OP_GPU_KERNEL(accuracy,
|
|
paddle::operators::AccuracyOpCUDAKernel<float>);
|