You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/dygraph_grad_maker.h

163 lines
4.9 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace imperative {
class GradOpBaseMakerBase {
public:
explicit GradOpBaseMakerBase(const OpBase* fw_op_base,
const NameVarBaseMap& var_base_map_in,
const NameVarBaseMap& var_base_map_out)
: fw_op_base_(fw_op_base),
var_base_map_in_(var_base_map_in),
var_base_map_out_(var_base_map_out) {}
virtual ~GradOpBaseMakerBase() = default;
virtual std::vector<std::unique_ptr<OpBase>> operator()() const = 0;
std::vector<std::shared_ptr<VarBase>> InputGrad(
const std::string& name, bool drop_empty_grad = true) const {
return GetVarBaseList(name, true, true);
}
std::vector<std::shared_ptr<VarBase>> OutputGrad(
const std::string& name) const {
return GetVarBaseList(name, true, false);
}
std::vector<std::shared_ptr<VarBase>> Input(const std::string name) const {
return GetVarBaseList(name, false, true);
}
std::vector<std::shared_ptr<VarBase>> Output(const std::string& name) const {
return GetVarBaseList(name, false, false);
}
std::vector<std::shared_ptr<VarBase>> Empty() const { return {}; }
std::vector<std::string> InputNames() const {
std::vector<std::string> vec_temp;
vec_temp.reserve(var_base_map_in_.size());
for (auto& it : var_base_map_in_) {
vec_temp.emplace_back(it.first);
}
return vec_temp;
}
std::vector<std::string> OutputNames() const {
std::vector<std::string> vec_temp;
vec_temp.reserve(var_base_map_out_.size());
for (auto& it : var_base_map_out_) {
vec_temp.emplace_back(it.first);
}
return vec_temp;
}
const std::unordered_map<std::string, framework::Attribute>& Attrs() const {
return fw_op_base_->Attrs();
}
const framework::Attribute& GetAttr(const std::string& name) const {
auto& map = fw_op_base_->Attrs();
auto it = map.find(name);
PADDLE_ENFORCE(it != map.end(),
"Cannot find attribute [%s] in operator [%s]", name,
fw_op_base_->Type());
return it->second;
}
template <typename T>
inline const T& Attr(const std::string& name) const {
return boost::get<T>(GetAttr(name));
}
std::string ForwardOpType() const { return fw_op_base_->Type(); }
protected:
bool HasInput(const std::string& name) const {
auto it = var_base_map_in_.find(name);
return it != var_base_map_in_.end();
}
bool HasOutput(const std::string name) const {
auto it = var_base_map_out_.find(name);
return it != var_base_map_out_.end();
}
private:
std::vector<std::shared_ptr<VarBase>> GetVarBaseList(const std::string& name,
bool is_grad,
bool is_input) const {
const NameVarBaseMap& data_map =
is_input ? var_base_map_in_ : var_base_map_out_;
auto iterator = data_map.find(name);
std::vector<std::shared_ptr<imperative::VarBase>> vec_temp;
if (iterator != data_map.end()) {
vec_temp.reserve(iterator->second.size());
for (auto& var_base_temp : iterator->second) {
if (is_grad) {
if (!var_base_temp->HasGradVar()) {
VLOG(6) << "GradVarBase of var " << var_base_temp->Name()
<< " in OP " << fw_op_base_->Type() << " is null";
var_base_temp->MutableGradVarBase();
}
auto grad_var_base_tmp = var_base_temp->GradVarBase();
if (!is_input) {
auto* tensor = grad_var_base_tmp->MutableVar()
->GetMutable<framework::LoDTensor>();
tensor->Resize(
var_base_temp->Var().Get<framework::LoDTensor>().dims());
}
vec_temp.emplace_back(grad_var_base_tmp);
} else {
vec_temp.emplace_back(var_base_temp);
}
}
}
return vec_temp;
}
private:
const OpBase* fw_op_base_;
const NameVarBaseMap& var_base_map_in_;
const NameVarBaseMap& var_base_map_out_;
protected:
std::vector<framework::BlockDesc*> grad_block_;
};
} // namespace imperative
} // namespace paddle