You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
501 lines
18 KiB
501 lines
18 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
from . import core
|
|
import numpy
|
|
import os
|
|
import six
|
|
from six.moves import zip, range, xrange
|
|
import multiprocessing
|
|
|
|
from .framework import Variable, default_main_program, _current_expected_place
|
|
from .framework import _cpu_num, _cuda_ids
|
|
__all__ = ['DataFeeder']
|
|
|
|
|
|
def convert_dtype(dtype):
|
|
if dtype == core.VarDesc.VarType.FP32:
|
|
return 'float32'
|
|
elif dtype == core.VarDesc.VarType.INT64:
|
|
return 'int64'
|
|
elif dtype == core.VarDesc.VarType.FP64:
|
|
return 'float64'
|
|
elif dtype == core.VarDesc.VarType.FP16:
|
|
return 'float16'
|
|
elif dtype == core.VarDesc.VarType.INT32:
|
|
return 'int32'
|
|
elif dtype == core.VarDesc.VarType.UINT8:
|
|
return 'uint8'
|
|
else:
|
|
raise ValueError("dtype must be any of [int32, float32, int64, "
|
|
"float64, uint8]")
|
|
|
|
|
|
class DataToLoDTensorConverter(object):
|
|
def __init__(self, place, lod_level, shape, dtype):
|
|
self.place = place
|
|
self.lod_level = lod_level
|
|
self.shape = shape
|
|
negtive_count = 0
|
|
for s in self.shape:
|
|
if s < 0:
|
|
negtive_count += 1
|
|
if negtive_count > 1:
|
|
self.shape = None
|
|
break
|
|
self.dtype = convert_dtype(dtype)
|
|
self._reset()
|
|
|
|
def _reset(self):
|
|
self.data = []
|
|
self.lod = [[] for _ in six.moves.range(self.lod_level)]
|
|
|
|
def feed(self, data):
|
|
self._feed_impl_(data, self.lod, self.lod_level)
|
|
|
|
def _feed_impl_(self, data, lod, lod_level):
|
|
if lod_level == 0:
|
|
self.data.append(data)
|
|
else:
|
|
lod[0].append(len(data))
|
|
for each_data in data:
|
|
self._feed_impl_(each_data, lod[1:], lod_level - 1)
|
|
|
|
def _check_shape(self, shape):
|
|
for s1, s2 in zip(self.shape, shape):
|
|
if s1 != s2 and s1 >= 0 and s2 >= 0:
|
|
raise ValueError(
|
|
"Shape not match. What is defined in data layer is {}, but receive {}".
|
|
format(self.shape, shape))
|
|
|
|
def done(self):
|
|
arr = numpy.array(self.data, dtype=self.dtype)
|
|
if self.shape:
|
|
if len(arr.shape) != len(self.shape):
|
|
try:
|
|
arr = arr.reshape(self.shape)
|
|
except ValueError:
|
|
raise ValueError(
|
|
"Reshape error. What is defined in data layer is {}, but receive {}"
|
|
.format(self.shape, arr.shape))
|
|
t = core.LoDTensor()
|
|
t.set(arr, self.place)
|
|
if self.lod_level > 0:
|
|
t.set_recursive_sequence_lengths(self.lod)
|
|
self._reset()
|
|
return t
|
|
|
|
|
|
class BatchedTensorProvider(object):
|
|
def __init__(self, feed_list, place, batch_size, generator, drop_last):
|
|
self.place = place
|
|
self.batch_size = batch_size
|
|
self.generator = generator
|
|
self.converters = []
|
|
self.drop_last = drop_last
|
|
|
|
for var in feed_list:
|
|
assert var.lod_level == 0, "lod_level must be 0"
|
|
self.converters.append(
|
|
DataToLoDTensorConverter(
|
|
place=self.place,
|
|
lod_level=0,
|
|
shape=var.shape,
|
|
dtype=var.dtype))
|
|
|
|
def _done(self):
|
|
return [c.done() for c in self.converters]
|
|
|
|
def __call__(self):
|
|
idx = 0
|
|
for each_sample in self.generator():
|
|
for each_slot, each_converter in six.moves.zip(each_sample,
|
|
self.converters):
|
|
each_converter.data.append(each_slot)
|
|
|
|
idx += 1
|
|
if idx == self.batch_size:
|
|
idx = 0
|
|
yield self._done()
|
|
|
|
if not self.drop_last and idx > 0:
|
|
yield self._done()
|
|
else:
|
|
[c._reset() for c in self.converters]
|
|
|
|
|
|
class DataFeeder(object):
|
|
"""
|
|
DataFeeder converts the data that returned by a reader into a data
|
|
structure that can feed into Executor and ParallelExecutor. The reader
|
|
usually returns a list of mini-batch data entries. Each data entry in
|
|
the list is one sample. Each sample is a list or a tuple with one
|
|
feature or multiple features.
|
|
|
|
The simple usage shows below:
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
place = fluid.CPUPlace()
|
|
img = fluid.layers.data(name='image', shape=[1, 28, 28])
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
|
|
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
|
|
|
|
|
|
If you want to feed data into GPU side separately in advance when you
|
|
use multi-GPU to train a model, you can use `decorate_reader` function.
|
|
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
place=fluid.CUDAPlace(0)
|
|
data = fluid.layers.data(name='data', shape=[3, 224, 224], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
|
|
reader = feeder.decorate_reader(
|
|
paddle.batch(paddle.dataset.flowers.train(), batch_size=16), multi_devices=True)
|
|
|
|
Args:
|
|
feed_list(list): The Variables or Variables'name that will
|
|
feed into model.
|
|
place(Place): place indicates feed data into CPU or GPU, if you want to
|
|
feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
|
|
the GPU id), or if you want to feed data into CPU, please using
|
|
`fluid.CPUPlace()`.
|
|
program(Program): The Program that will feed data into, if program
|
|
is None, it will use default_main_program(). Default None.
|
|
|
|
Raises:
|
|
ValueError: If some Variable is not in this Program.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
def reader():
|
|
yield [np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32')],
|
|
|
|
main_program = fluid.Program()
|
|
startup_program = fluid.Program()
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
data_1 = fluid.layers.data(name='data_1', shape=[1, 2, 2])
|
|
data_2 = fluid.layers.data(name='data_2', shape=[1, 1, 3])
|
|
out = fluid.layers.fc(input=[data_1, data_2], size=2)
|
|
# ...
|
|
|
|
feeder = fluid.DataFeeder([data_1, data_2], place)
|
|
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_program)
|
|
for data in reader():
|
|
outs = exe.run(program=main_program,
|
|
feed=feeder.feed(data),
|
|
fetch_list=[out])
|
|
|
|
"""
|
|
|
|
def __init__(self, feed_list, place, program=None):
|
|
self.feed_dtypes = []
|
|
self.feed_names = []
|
|
self.feed_shapes = []
|
|
self.feed_lod_level = []
|
|
if program is None:
|
|
program = default_main_program()
|
|
for each_var in feed_list:
|
|
if isinstance(each_var, six.string_types):
|
|
each_var = program.block(0).var(each_var)
|
|
if not isinstance(each_var, Variable):
|
|
raise TypeError("Feed list should contain a list of variable")
|
|
self.feed_dtypes.append(each_var.dtype)
|
|
self.feed_names.append(each_var.name)
|
|
self.feed_lod_level.append(each_var.lod_level)
|
|
self.feed_shapes.append(each_var.shape)
|
|
|
|
self.place = place
|
|
|
|
def feed(self, iterable):
|
|
"""
|
|
According to feed_list and iterable, converters the input into
|
|
a data structure that can feed into Executor and ParallelExecutor.
|
|
|
|
Args:
|
|
iterable(list|tuple): the input data.
|
|
|
|
Returns:
|
|
dict: the result of conversion.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy.random as random
|
|
import paddle.fluid as fluid
|
|
|
|
def reader(limit=5):
|
|
for i in range(limit):
|
|
yield random.random([784]).astype('float32'), random.random([1]).astype('int64'), random.random([256]).astype('float32')
|
|
|
|
data_1 = fluid.layers.data(name='data_1', shape=[1, 28, 28])
|
|
data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64')
|
|
data_3 = fluid.layers.data(name='data_3', shape=[16, 16], dtype='float32')
|
|
feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
|
|
|
|
result = feeder.feed(reader())
|
|
"""
|
|
converter = []
|
|
for lod_level, shape, dtype in six.moves.zip(
|
|
self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
|
|
converter.append(
|
|
DataToLoDTensorConverter(
|
|
place=self.place,
|
|
lod_level=lod_level,
|
|
shape=shape,
|
|
dtype=dtype))
|
|
|
|
for each_sample in iterable:
|
|
assert len(each_sample) == len(converter), (
|
|
"The number of fields in data (%d) does not match " +
|
|
"len(feed_list) (%d)") % (len(each_sample), len(converter))
|
|
for each_converter, each_slot in six.moves.zip(converter,
|
|
each_sample):
|
|
each_converter.feed(each_slot)
|
|
ret_dict = {}
|
|
for each_name, each_converter in six.moves.zip(self.feed_names,
|
|
converter):
|
|
ret_dict[each_name] = each_converter.done()
|
|
return ret_dict
|
|
|
|
def feed_parallel(self, iterable, num_places=None):
|
|
"""
|
|
Takes multiple mini-batches. Each mini-batch will be feed on each
|
|
device in advance.
|
|
|
|
Args:
|
|
iterable(list|tuple): the input data.
|
|
num_places(int): the number of devices. Default None.
|
|
|
|
Returns:
|
|
dict: the result of conversion.
|
|
|
|
Notes:
|
|
The number of devices and number of mini-batches must be same.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy.random as random
|
|
import paddle.fluid as fluid
|
|
|
|
def reader(limit=10):
|
|
for i in range(limit):
|
|
yield [random.random([784]).astype('float32'), random.random([1]).astype('float32')],
|
|
|
|
x = fluid.layers.data(name='x', shape=[1, 28, 28])
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
fluid.layers.elementwise_add(x, y)
|
|
|
|
feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
|
|
place_num = 2
|
|
places = [fluid.CPUPlace() for x in range(place_num)]
|
|
data = []
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
exe.run(fluid.default_startup_program())
|
|
program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
|
|
for item in reader():
|
|
data.append(item)
|
|
if place_num == len(data):
|
|
exe.run(program=program, feed=list(feeder.feed_parallel(data, place_num)), fetch_list=[])
|
|
data = []
|
|
"""
|
|
if isinstance(self.place, core.CUDAPlace):
|
|
places = [
|
|
core.CUDAPlace(i)
|
|
for i in six.moves.xrange(
|
|
self._get_number_of_places_(num_places))
|
|
]
|
|
else:
|
|
places = [
|
|
core.CPUPlace()
|
|
for _ in six.moves.xrange(
|
|
self._get_number_of_places_(num_places))
|
|
]
|
|
|
|
if len(iterable) != len(places):
|
|
raise ValueError("feed_parallel takes multiple mini-batches. Each "
|
|
"mini-batch will be feed on each device. The "
|
|
"number of devices and number of mini-batches "
|
|
"must be same.")
|
|
|
|
place = self.place
|
|
for p, batch in six.moves.zip(places, iterable):
|
|
self.place = p
|
|
yield self.feed(batch)
|
|
self.place = place
|
|
|
|
def _get_number_of_places_(self, num_places):
|
|
if num_places is not None:
|
|
return int(num_places)
|
|
elif isinstance(self.place, core.CUDAPlace):
|
|
return len(_cuda_ids())
|
|
else:
|
|
return _cpu_num()
|
|
|
|
def decorate_reader(self,
|
|
reader,
|
|
multi_devices,
|
|
num_places=None,
|
|
drop_last=True):
|
|
"""
|
|
Converter the input data into a data that returned by reader into
|
|
multiple mini-batches. Each mini-batch will be feed on each device.
|
|
|
|
Args:
|
|
reader(function): the reader is the function which can generate data.
|
|
multi_devices(bool): whether to use multiple devices or not.
|
|
num_places(int): if multi_devices is True, you can specify the number
|
|
of GPU to use, if multi_devices is None, the function will use all the
|
|
GPU of the current machine. Default None.
|
|
drop_last(bool): whether to drop the last batch if the
|
|
size of the last batch is less than batch_size. Default True.
|
|
|
|
Returns:
|
|
dict: the result of conversion.
|
|
|
|
Raises:
|
|
ValueError: If drop_last is False and the data batch cannot fit for devices.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy.random as random
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.compiler as compiler
|
|
|
|
def reader(limit=10):
|
|
for i in range(limit):
|
|
yield (random.random([784]).astype('float32'), random.random([1]).astype('int64')),
|
|
|
|
place=fluid.CUDAPlace(0)
|
|
data = fluid.layers.data(name='data', shape=[1, 28, 28], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
hidden = fluid.layers.fc(input=data, size=10)
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
|
|
reader = feeder.decorate_reader(reader, multi_devices=True)
|
|
|
|
exe = fluid.Executor(place)
|
|
exe.run(fluid.default_startup_program())
|
|
compiled_prog = compiler.CompiledProgram(
|
|
fluid.default_main_program()).with_data_parallel()
|
|
for i,data in enumerate(reader()):
|
|
print('iteration : ', i + 1)
|
|
ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
|
|
"""
|
|
|
|
def __reader_creator__():
|
|
if not multi_devices:
|
|
for item in reader():
|
|
yield self.feed(item)
|
|
else:
|
|
num = self._get_number_of_places_(num_places)
|
|
item = []
|
|
for batch in reader():
|
|
item.append(batch)
|
|
if len(item) == num:
|
|
yield list(self.feed_parallel(item, num))
|
|
item = []
|
|
if not drop_last and len(item) != 0:
|
|
raise ValueError(
|
|
"The data batch which cannot fit for devices will be "
|
|
"dropped is not implementation. Other strategies are "
|
|
"not implemented")
|
|
|
|
return __reader_creator__
|
|
|
|
|
|
class NumpyToLoDTensorConverter(object):
|
|
def __init__(self, place):
|
|
self.place = place
|
|
self.data = []
|
|
self._reset()
|
|
|
|
def _reset(self):
|
|
self.data = []
|
|
|
|
def feed(self, data):
|
|
self.data.append(data)
|
|
|
|
def done(self):
|
|
arr = numpy.array(self.data)
|
|
t = core.LoDTensor()
|
|
t.set(arr, self.place)
|
|
self._reset()
|
|
return t
|
|
|
|
|
|
class ListTensorProvider(object):
|
|
def __init__(self, generator, places):
|
|
self.generator = generator
|
|
self.converters = []
|
|
self.places = []
|
|
if places:
|
|
if not isinstance(places, (list, tuple)):
|
|
places = [places]
|
|
assert len(
|
|
places) == 1, "dygraph mode CAN NOT specify multiple places."
|
|
for place in places:
|
|
if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
|
|
self.places.append(place)
|
|
else:
|
|
raise ValueError(
|
|
"Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
|
|
)
|
|
if len(self.places) == 0:
|
|
self.places.append(_current_expected_place())
|
|
|
|
def _readData(self, iterable, places):
|
|
for place, each_sample in six.moves.zip(places, iterable):
|
|
for item in each_sample:
|
|
if len(self.converters) < len(item):
|
|
for i in item:
|
|
self.converters.append(NumpyToLoDTensorConverter(place))
|
|
for each_converter, each_slot in six.moves.zip(self.converters,
|
|
item):
|
|
each_converter.feed(each_slot)
|
|
yield [c.done() for c in self.converters]
|
|
|
|
def __call__(self):
|
|
item = []
|
|
for batch in self.generator():
|
|
item.append(batch)
|
|
if len(item) == len(self.places):
|
|
yield list(self._readData(item, self.places))
|
|
item = []
|