You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/nn.py

13750 lines
503 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the neural network.
"""
from __future__ import print_function
import numpy as np
import warnings
import six
import os
import inspect
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant, NumpyArrayInitializer
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
from ..dygraph import base
from ..param_attr import ParamAttr
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
from .tensor import concat, assign, fill_constant, zeros
from . import utils
from .. import unique_name
from functools import reduce
from .. import core
from ..dygraph import layers
__all__ = [
'fc',
'center_loss',
'embedding',
'dynamic_lstm',
'dynamic_lstmp',
'dynamic_gru',
'gru_unit',
'linear_chain_crf',
'crf_decoding',
'cos_sim',
'cross_entropy',
'bpr_loss',
'square_error_cost',
'chunk_eval',
'sequence_conv',
'conv2d',
'conv3d',
'sequence_pool',
'sequence_softmax',
'softmax',
'pool2d',
'pool3d',
'adaptive_pool2d',
'adaptive_pool3d',
'batch_norm',
'data_norm',
'beam_search_decode',
'conv2d_transpose',
'conv3d_transpose',
'sequence_expand',
'sequence_expand_as',
'sequence_pad',
'sequence_unpad',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'reduce_prod',
'reduce_all',
'reduce_any',
'sequence_first_step',
'sequence_last_step',
'sequence_slice',
'dropout',
'split',
'ctc_greedy_decoder',
'edit_distance',
'l2_normalize',
'matmul',
'topk',
'warpctc',
'sequence_reshape',
'transpose',
'im2sequence',
'nce',
'sampled_softmax_with_cross_entropy',
'hsigmoid',
'beam_search',
'row_conv',
'multiplex',
'layer_norm',
'group_norm',
'spectral_norm',
'softmax_with_cross_entropy',
'smooth_l1',
'one_hot',
'autoincreased_step_counter',
'reshape',
'squeeze',
'unsqueeze',
'lod_reset',
'lod_append',
'lrn',
'pad',
'pad_constant_like',
'label_smooth',
'roi_pool',
'roi_align',
'dice_loss',
'image_resize',
'image_resize_short',
'resize_bilinear',
'resize_trilinear',
'resize_nearest',
'gather',
'gather_nd',
'scatter',
'scatter_nd_add',
'scatter_nd',
'sequence_scatter',
'random_crop',
'mean_iou',
'relu',
'selu',
'log',
'crop',
'rank_loss',
'margin_rank_loss',
'elu',
'relu6',
'pow',
'stanh',
'hard_sigmoid',
'swish',
'prelu',
'brelu',
'leaky_relu',
'soft_relu',
'flatten',
'sequence_mask',
'stack',
'pad2d',
'unstack',
'sequence_enumerate',
'unique',
'unique_with_counts',
'expand',
'sequence_concat',
'scale',
'elementwise_add',
'elementwise_div',
'elementwise_sub',
'elementwise_mul',
'elementwise_max',
'elementwise_min',
'elementwise_pow',
'elementwise_mod',
'elementwise_floordiv',
'uniform_random_batch_size_like',
'gaussian_random',
'sampling_id',
'gaussian_random_batch_size_like',
'sum',
'slice',
'shape',
'rank',
'size',
'logical_and',
'logical_or',
'logical_xor',
'logical_not',
'clip',
'clip_by_norm',
'mean',
'mul',
'sigmoid_cross_entropy_with_logits',
'maxout',
'space_to_depth',
'affine_grid',
'sequence_reverse',
'sequence_topk_avg_pooling',
'affine_channel',
'similarity_focus',
'hash',
'grid_sampler',
'log_loss',
'add_position_encoding',
'bilinear_tensor_product',
'merge_selected_rows',
'get_tensor_from_selected_rows',
'lstm',
'shuffle_channel',
'temporal_shift',
'py_func',
'psroi_pool',
'teacher_student_sigmoid_loss',
'huber_loss',
'kldiv_loss',
'tree_conv',
'npair_loss',
'pixel_shuffle',
'fsp_matrix',
'continuous_value_model',
'where',
'sign',
'deformable_conv',
'unfold',
'deformable_roi_pooling',
'match_matrix_tensor',
'filter_by_instag',
'var_conv_2d',
'shard_index',
'hard_swish',
]
kIgnoreIndex = -100
def fc(input,
size,
num_flatten_dims=1,
param_attr=None,
bias_attr=None,
act=None,
name=None):
"""
**Fully Connected Layer**
This function creates a fully connected layer in the network. It can take
one or multiple tensors as its inputs(input can be a list of Variable, see
Args in detail). It creates a variable called weights for each input tensor,
which represents a fully connected weight matrix from each input unit to
each output unit. The fully connected layer multiplies each input tensor
with its corresponding weight to produce an output Tensor with shape [M, `size`],
where M is batch size. If multiple input tensors are given, the results of
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
is not None, a bias variable will be created and added to the output.
Finally, if activation is not None, it will be applied to the output as well.
When the input is single tensor:
.. math::
Out = Act({XW + b})
When the input are multiple tensors:
.. math::
Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
In the above equation:
* :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
* :math:`X_i`: The i-th input tensor.
* :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
See below for an example.
.. code-block:: text
Given:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
data_2 = [[[0.1, 0.2, 0.3]]]
data_2.shape = (1, 1, 3)
out = fluid.layers.fc(input=[data_1, data_2], size=2)
Then:
out.data = [[0.18669507, 0.1893476]]
out.shape = (1, 2)
Args:
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
the input tensor(s) is at least 2.
size(int): The number of output units in this layer.
num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
two dimensions. If this happens, the multidimensional tensor will first be flattened
into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer.
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act (str, default None): Activation to be applied to the output of this layer.
name (str, default None): The name of this layer.
Returns:
Variable: The transformation result.
Raises:
ValueError: If rank of the input tensor is less than 2.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# when input is single tensor
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
# when input are multiple tensors
data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
"""
helper = LayerHelper("fc", **locals())
dtype = helper.input_dtype()
mul_results = []
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1})
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
# add bias
pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
def center_loss(input,
label,
num_classes,
alpha,
param_attr,
update_center=True):
"""
**Center loss Cost layer**
This layer accepts input (deep features,the output of the last hidden layer)
and target label and return the center loss cost
For deep features, :math:`X`, and target labels, :math:`Y`, the equation is:
.. math::
Out = \\frac{1}{2}(X - Y)^2
Args:
input (Variable): a 2-D tensor with shape[N x M].
label (Variable): the groud truth which is a 2-D tensor
with shape[N x 1],where N is the batch size.
num_classes (int): the number of classification categories.
alpha (float|Variable): learning rate of centers.
param_attr (ParamAttr): Attribute initializer of centers.
update_center (bool): whether to update value of center.
Returns:
Variable: 2-D tensor with shape [N * 1]
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name='x',shape=[20,30],dtype='float32')
label = fluid.layers.data(name='y',shape=[20,1],dtype='int64')
num_classes = 1000
alpha = 0.01
param_attr = fluid.initializer.Xavier(uniform=False)
center_loss=fluid.layers.center_loss(input=input,
label=label,
num_classes=1000,
alpha=alpha,
param_attr=fluid.initializer.Xavier(uniform=False),
update_center=True)
"""
helper = LayerHelper('center_loss', **locals())
dtype = helper.input_dtype()
centers_shape = [num_classes, input.shape[1]]
centers_param = helper.create_parameter(
attr=param_attr, shape=centers_shape, dtype=dtype)
centers_param.stop_gradient = True
if isinstance(alpha, Variable):
alpha_param = alpha
else:
assert isinstance(alpha, float)
alpha_param = helper.create_variable(
name="centerloss_alpha",
shape=[1],
dtype="float32",
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=True,
stop_gradient=True,
initializer=Constant(alpha))
centersdiff = helper.create_variable_for_type_inference(dtype=input.dtype)
loss = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='center_loss',
inputs={
'X': [input],
'Label': [label],
'Centers': [centers_param],
'CenterUpdateRate': [alpha_param]
},
outputs={
'SampleCenterDiff': [centersdiff],
'Loss': [loss],
'CentersOut': [centers_param]
},
attrs={'cluster_num': num_classes,
'need_update': update_center})
return loss
def embedding(input,
size,
is_sparse=False,
is_distributed=False,
padding_idx=None,
param_attr=None,
dtype='float32'):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
input(Variable): Input is a Tensor<int64> Variable, which contains the IDs information.
The value of the input IDs should satisfy :math:`0<= id < size[0]`.
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): It will output all-zero padding data whenever
lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
will automatically be converted to :math:`size[0] + padding\_idx` to use.
Default: None.
param_attr(ParamAttr): Parameters for this layer.
dtype(np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
tensor. It can be float32, float_16, int etc.
Returns:
Variable: The tensor variable storing the embeddings of the \
supplied inputs.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[128, 64])
"""
helper = LayerHelper('embedding', **locals())
remote_prefetch = is_sparse and (not is_distributed)
if remote_prefetch:
assert is_sparse is True and is_distributed is False
w = helper.create_parameter(
attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
tmp = helper.create_variable_for_type_inference(dtype)
padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
size[0] + padding_idx)
helper.append_op(
type='lookup_table',
inputs={'Ids': input,
'W': w},
outputs={'Out': tmp},
attrs={
'is_sparse': is_sparse,
'is_distributed': is_distributed,
'remote_prefetch': remote_prefetch,
'padding_idx': padding_idx
})
return tmp
def _pull_box_sparse(input, size, dtype='float32'):
"""
**Pull Box Sparse Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
BoxPS lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
Args:
input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
contains the IDs information.
size(int): The embedding size parameter, which indicates the size of
each embedding vector respectively.
dtype(str): The dtype refers to the data type of output tensor. Only supports
float32 now.
Returns:
Variable|list of Variable: The tensor variable storing the embeddings of the \
supplied inputs.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
emb = fluid.layers.pull_box_sparse(input=data, size=[11])
"""
helper = LayerHelper('pull_box_sparse', **locals())
if dtype != 'float32':
raise ValueError(
"BoxPS only support float type embedding now, and your type is: " +
dtype)
helper.input_dtype()
inputs = helper.multiple_input()
outs = [
helper.create_variable_for_type_inference(dtype)
for i in range(len(inputs))
]
helper.append_op(
type='pull_box_sparse',
inputs={'Ids': inputs},
outputs={'Out': outs},
attrs={'size': size})
if len(outs) == 1:
return outs[0]
return outs
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
size,
h_0=None,
c_0=None,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
dtype='float32',
name=None):
"""
${comment}
Args:
input (Variable): ${input_comment}
size (int): 4 * hidden size.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the hidden size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
- Weights = {:math:`W_{ch}, W_{ih}, \
W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden
size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment}
cell_activation (str): ${cell_activation_comment}
candidate_activation (str): ${candidate_activation_comment}
dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden state, and cell state of LSTM. The shape of both \
is (T x D), and lod is the same with the `input`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
emb_dim = 256
vocab_size = 10000
hidden_dim = 512
data = fluid.layers.data(name='x', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
hidden = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, size), \
'The shape of h0 should be (batch_size, %d)' % size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
helper.append_op(
type='lstm',
inputs=inputs,
outputs={
'Hidden': hidden,
'Cell': cell,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation
})
return hidden, cell
def lstm(input,
init_h,
init_c,
max_len,
hidden_size,
num_layers,
dropout_prob=0.0,
is_bidirec=False,
is_test=False,
name=None,
default_initializer=None,
seed=-1):
"""
If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
.. math::
i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
\\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
h_t &= o_t \odot tanh(c_t)
- $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The :math:`\odot` is the element-wise product of the vectors.
- :math:`tanh` is the activation functions.
- :math:`\\tilde{c_t}` is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
X represensts a matrix multiplication
Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
There is NO dropout work on rnn output of the last RNN layers
is_bidirec (bool): If it is bidirectional
is_test (bool): If it is in test phrase
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
default_initializer(Initialize|None): Where use initializer to initialize the Weight
If set None, defaule initializer will be used
seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
Returns:
rnn_out(Tensor),last_h(Tensor),last_c(Tensor):
Three tensors, rnn_out, last_h, last_c:
- rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
- last_h is the hidden state of the last step of LSTM \
shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
- last_c(Tensor): the cell state of the last step of LSTM \
shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
emb_dim = 256
vocab_size = 10000
data = fluid.layers.data(name='x', shape=[-1, 100, 1],
dtype='int32')
emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
batch_size = 20
max_len = 100
dropout_prob = 0.2
input_size = 100
hidden_size = 150
num_layers = 1
init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
max_len, hidden_size, num_layers, \
dropout_prob=dropout_prob)
"""
helper = LayerHelper('cudnn_lstm', **locals())
dtype = input.dtype
input_shape = list(input.shape)
input_size = input_shape[-1]
weight_size = 0
for i in range(num_layers):
if i == 0:
input_weight_size = (input_size * hidden_size) * 4
else:
if is_bidirec:
input_weight_size = (hidden_size * 2 * hidden_size) * 4
else:
input_weight_size = (hidden_size * hidden_size) * 4
hidden_weight_size = (hidden_size * hidden_size) * 4
if is_bidirec:
weight_size += (input_weight_size + hidden_weight_size) * 2
weight_size += hidden_size * 8 * 2
else:
weight_size += input_weight_size + hidden_weight_size
weight_size += hidden_size * 8
weight = helper.create_parameter(
attr=helper.param_attr,
shape=[weight_size],
dtype=dtype,
default_initializer=default_initializer)
out = helper.create_variable_for_type_inference(dtype)
last_h = helper.create_variable_for_type_inference(dtype)
last_c = helper.create_variable_for_type_inference(dtype)
cache = helper.create_variable(
persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)
helper.append_op(
type='cudnn_lstm',
inputs={
'Input': input,
'InitH': init_h,
'InitC': init_c,
'W': weight,
'Cache': cache,
},
outputs={
'Out': out,
'last_h': last_h,
'last_c': last_c,
},
attrs={
'max_len': max_len,
'is_bidirec': is_bidirec,
'input_size': input_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'is_test': is_test,
'dropout_prob': dropout_prob,
'seed': seed,
})
return out, last_h, last_c
def dynamic_lstmp(input,
size,
proj_size,
param_attr=None,
bias_attr=None,
use_peepholes=True,
is_reverse=False,
gate_activation='sigmoid',
cell_activation='tanh',
candidate_activation='tanh',
proj_activation='tanh',
dtype='float32',
name=None,
h_0=None,
c_0=None,
cell_clip=None,
proj_clip=None):
"""
**Dynamic LSTMP Layer**
LSTMP (LSTM with recurrent projection) layer has a separate projection
layer after the LSTM layer, projecting the original hidden state to a
lower-dimensional one, which is proposed to reduce the number of total
parameters and furthermore computational complexity for the LSTM,
espeacially for the case that the size of output units is relative
large (https://research.google.com/pubs/archive/43905.pdf).
The formula is as follows:
.. math::
i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
\\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
h_t & = o_t \odot act_h(c_t)
r_t & = \overline{act_h}(W_{rh}h_t)
In the above formula:
* :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
the matrix of weights from the input gate to the input).
* :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
matrices for peephole connections. In our implementation, \
we use vectors to represent these diagonal weight matrices.
* :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
bias vector).
* :math:`\sigma`: The activation, such as logistic sigmoid function.
* :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
gate, and cell activation vectors, respectively, all of which have \
the same size as the cell output activation vector :math:`h`.
* :math:`h`: The hidden state.
* :math:`r`: The recurrent projection of the hidden state.
* :math:`\\tilde{c_t}`: The candidate hidden state, whose \
computation is based on the current input and previous hidden state.
* :math:`\odot`: The element-wise product of the vectors.
* :math:`act_g` and :math:`act_h`: The cell input and cell output \
activation functions and `tanh` is usually used for them.
* :math:`\overline{act_h}`: The activation function for the projection \
output, usually using `identity` or same as :math:`act_h`.
Set `use_peepholes` to `False` to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
operations on the input :math:`x_{t}` are NOT included in this operator.
Users can choose to use fully-connected layer before LSTMP layer.
Args:
input(Variable): The input of dynamic_lstmp layer, which supports
variable-time length input sequence. The underlying
tensor in this Variable is a matrix with shape
(T X 4D), where T is the total time steps in this
mini-batch, D is the hidden size.
size(int): 4 * hidden size.
proj_size(int): The size of projection output.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight and projection weight.
- Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
W_{fh}, W_{oh}`}.
- The shape of hidden-hidden weight is (P x 4D),
where P is the projection size and D the hidden
size.
- Projection weight = {:math:`W_{rh}`}.
- The shape of projection weight is (D x P).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden
bias weights and peephole connections weights if
setting `use_peepholes` to `True`.
1. `use_peepholes = False`
- Biases = {:math:`b_c, b_i, b_f, b_o`}.
- The shape is (1 x 4D).
2. `use_peepholes = True`
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}.
- The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes(bool): Whether to enable diagonal/peephole connections,
default `True`.
is_reverse(bool): Whether to compute reversed LSTM, default `False`.
gate_activation(str): The activation for input gate, forget gate and
output gate. Choices = ["sigmoid", "tanh", "relu",
"identity"], default "sigmoid".
cell_activation(str): The activation for cell output. Choices = ["sigmoid",
"tanh", "relu", "identity"], default "tanh".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
proj_activation(str): The activation for projection output.
Choices = ["sigmoid", "tanh", "relu", "identity"],
default "tanh".
dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
h_0(Variable): The initial hidden state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size and D is the projection size.
c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time.
cell_clip(float): If provided the cell state is clipped
by this value prior to the cell output activation.
proj_clip(float): If `num_proj > 0` and `proj_clip` is
provided, then the projected values are clipped elementwise to within
`[-proj_clip, proj_clip]`.
Returns:
tuple: A tuple of two output variable: the projection of hidden state, \
and cell state of LSTMP. The shape of projection is (T x P), \
for the cell state which is (T x D), and both LoD is the same \
with the `input`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim, proj_dim = 512, 256
fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
act=None, bias_attr=None)
proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
size=hidden_dim * 4,
proj_size=proj_dim,
use_peepholes=False,
is_reverse=True,
cell_activation="tanh",
proj_activation="tanh")
"""
assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals())
size = size // 4
weight = helper.create_parameter(
attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
proj_weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
bias_size = [1, 7 * size]
if not use_peepholes:
bias_size[1] = 4 * size
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
projection = helper.create_variable_for_type_inference(dtype)
cell = helper.create_variable_for_type_inference(dtype)
ordered_proj0 = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
inputs = {
'Input': input,
'Weight': weight,
'ProjWeight': proj_weight,
'Bias': bias
}
batch_size = input.shape[0]
if h_0:
assert h_0.shape == (batch_size, proj_size), \
'The shape of h0 should be (batch_size, %d)' % proj_size
inputs['H0'] = h_0
if c_0:
assert c_0.shape == (batch_size, size), \
'The shape of c0 should be (batch_size, %d)' % size
inputs['C0'] = c_0
if cell_clip:
assert cell_clip >= 0, "cell_clip should not be negtive."
if proj_clip:
assert proj_clip >= 0, "proj_clip should not be negtive."
helper.append_op(
type='lstmp',
inputs=inputs,
outputs={
'Projection': projection,
'Cell': cell,
'BatchHidden': batch_hidden,
'BatchGate': batch_gate,
'BatchCellPreAct': batch_cell_pre_act
},
attrs={
'use_peepholes': use_peepholes,
'cell_clip': cell_clip,
'proj_clip': proj_clip,
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'cell_activation': cell_activation,
'candidate_activation': candidate_activation,
'proj_activation': proj_activation
})
return projection, cell
def dynamic_gru(input,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation='sigmoid',
candidate_activation='tanh',
h_0=None,
origin_mode=False):
"""
**Gated Recurrent Unit (GRU) Layer**
if origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
The formula is as follows:
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
if origin_mode is True then the equation is from paper
Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
is the update gate and reset gate activation function and :math:`sigmoid`
is usually used for it. :math:`act_c` is the activation function for
candidate hidden state and :math:`tanh` is usually used for it.
Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
the input :math:`x_{t}` are NOT included in this operator. Users can choose
to use fully-connect layer before GRU layer.
Args:
input(Variable): The input of dynamic_gru layer, which supports
variable-time length input sequence. The underlying tensor in this
Variable is a matrix with shape :math:`(T \\times 3D)`, where
:math:`T` is the total time steps in this mini-batch, :math:`D`
is the hidden size.
size(int): The dimension of the gru cell.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T \\times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D \\times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D \\times D)`.
If it is set to None or one attribute of ParamAttr, dynamic_gru will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, dynamic_gru will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
is_reverse(bool): Whether to compute reversed GRU, default
:attr:`False`.
gate_activation(str): The activation for update gate and reset gate.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
candidate_activation(str): The activation for candidate hidden state.
Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
h_0 (Variable): This is initial hidden state. If not set, default is
zero. This is a tensor with shape (N x D), where N is the number of
total time steps of input mini-batch feature and D is the hidden
size.
Returns:
Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
and sequence length is the same with the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='sequence', shape=[1],
dtype='int32', lod_level=1)
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
"""
assert in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals())
dtype = helper.input_dtype()
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
bias = helper.create_parameter(
attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
batch_size = input.shape[0]
inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
if h_0:
assert h_0.shape == (
batch_size, size
), 'The shape of h0 should be(batch_size, %d)' % size
inputs['H0'] = h_0
hidden = helper.create_variable_for_type_inference(dtype)
batch_gate = helper.create_variable_for_type_inference(dtype)
batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
batch_hidden = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gru',
inputs=inputs,
outputs={
'Hidden': hidden,
'BatchGate': batch_gate,
'BatchResetHiddenPrev': batch_reset_hidden_prev,
'BatchHidden': batch_hidden
},
attrs={
'is_reverse': is_reverse,
'gate_activation': gate_activation,
'activation': candidate_activation,
'origin_mode': origin_mode
})
return hidden
def gru_unit(input,
hidden,
size,
param_attr=None,
bias_attr=None,
activation='tanh',
gate_activation='sigmoid',
origin_mode=False):
"""
**GRU unit layer**
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)
if origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
Args:
input (Variable): The fc transformed input value of current step.
hidden (Variable): The hidden value of gru unit from previous step.
size (integer): The input dimension value.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T \\times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D \\times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D \\times D)`.
If it is set to None or one attribute of ParamAttr, gru_unit will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
activation (string): The activation type for cell (actNode).
Default: 'tanh'
gate_activation (string): The activation type for gates (actGate).
Default: 'sigmoid'
Returns:
tuple: The hidden value, reset-hidden value and gate values.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim = 128, 64
data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
hidden_dim = 512
x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
pre_hidden = fluid.layers.data(
name='pre_hidden', shape=[hidden_dim], dtype='float32')
hidden = fluid.layers.gru_unit(
input=x, hidden=pre_hidden, size=hidden_dim * 3)
"""
activation_dict = dict(
identity=0,
sigmoid=1,
tanh=2,
relu=3, )
activation = activation_dict[activation]
gate_activation = activation_dict[gate_activation]
helper = LayerHelper('gru_unit', **locals())
dtype = helper.input_dtype()
size = size // 3
# create weight
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
gate = helper.create_variable_for_type_inference(dtype)
reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
updated_hidden = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
# create bias
if helper.bias_attr:
bias_size = [1, 3 * size]
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
helper.append_op(
type='gru_unit',
inputs=inputs,
outputs={
'Gate': gate,
'ResetHiddenPrev': reset_hidden_pre,
'Hidden': updated_hidden,
},
attrs={
'activation': 2, # tanh
'gate_activation': 1, # sigmoid
})
return updated_hidden, reset_hidden_pre, gate
@templatedoc()
def linear_chain_crf(input, label, param_attr=None, length=None):
"""
Linear Chain CRF.
${comment}
Args:
input(${emission_type}): ${emission_comment}
label(${label_type}): ${label_comment}
Length(${length_type}): ${length_comment}
param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Returns:
output(${emission_exps_type}): ${emission_exps_comment} \n
output(${transition_exps_type}): ${transition_exps_comment} \n
output(${log_likelihood_type}): ${log_likelihood_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
#define net structure, using LodTensor
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input_data = fluid.layers.data(name='input_data', shape=[10], dtype='float32', lod_level=1)
label = fluid.layers.data(name='label', shape=[1], dtype='int', lod_level=1)
emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
crf_cost = fluid.layers.linear_chain_crf(
input=emission,
label=label,
param_attr=fluid.ParamAttr(
name='crfw',
learning_rate=0.01))
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
#define data, using LoDTensor
a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
feed1 = {'input_data':a,'label':b}
loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
print(loss)
#define net structure, using padding
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input_data2 = fluid.layers.data(name='input_data2', shape=[10,10], dtype='float32')
label2 = fluid.layers.data(name='label2', shape=[10,1], dtype='int')
label_length = fluid.layers.data(name='length', shape=[1], dtype='int')
emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
crf_cost2 = fluid.layers.linear_chain_crf(
input=emission2,
label=label2,
length=label_length,
param_attr=fluid.ParamAttr(
name='crfw',
learning_rate=0.01))
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
#define data, using padding
cc=np.random.rand(4,10,10).astype('float32')
dd=np.random.rand(4,10,1).astype('int64')
ll=np.array([[3,3,4,2]])
feed2 = {'input_data2':cc,'label2':dd,'length':ll}
loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
print(loss2)
#you can use find_var to get transition parameter.
transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
print(transition)
"""
helper = LayerHelper('linear_chain_crf', **locals())
size = input.shape[1]
transition = helper.create_parameter(
attr=helper.param_attr,
shape=[size + 2, size],
dtype=helper.input_dtype())
alpha = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
emission_exps = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
transition_exps = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
log_likelihood = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
this_inputs = {
"Emission": [input],
"Transition": transition,
"Label": [label]
}
if length:
this_inputs['length'] = [length]
helper.append_op(
type='linear_chain_crf',
inputs=this_inputs,
outputs={
"Alpha": [alpha],
"EmissionExps": [emission_exps],
"TransitionExps": transition_exps,
"LogLikelihood": log_likelihood
})
return log_likelihood
@templatedoc()
def crf_decoding(input, param_attr, label=None):
"""
${comment}
Args:
input(${emission_type}): ${emission_comment}
param_attr(ParamAttr): The parameter attribute for training.
label(${label_type}): ${label_comment}
Returns:
Variable: ${viterbi_path_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int32')
hidden = fluid.layers.fc(input=images, size=2)
crf = fluid.layers.linear_chain_crf(input=hidden, label=label,
param_attr=fluid.ParamAttr(name="crfw"))
crf_decode = fluid.layers.crf_decoding(input=hidden,
param_attr=fluid.ParamAttr(name="crfw"))
"""
helper = LayerHelper('crf_decoding', **locals())
transition = helper.get_parameter(param_attr.name)
viterbi_path = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
helper.append_op(
type='crf_decoding',
inputs={"Emission": [input],
"Transition": transition,
"Label": label},
outputs={"ViterbiPath": [viterbi_path]})
return viterbi_path
@templatedoc()
def cos_sim(X, Y):
"""
${comment}
Args:
X (Variable): ${x_comment}.
Y (Variable): ${y_comment}.
Returns:
Variable: the output of cosine(X, Y).
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
out = fluid.layers.cos_sim(x, y)
"""
helper = LayerHelper('cos_sim', **locals())
out = helper.create_variable_for_type_inference(dtype=X.dtype)
xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
helper.append_op(
type='cos_sim',
inputs={'X': [X],
'Y': [Y]},
outputs={'Out': [out],
'XNorm': [xnorm],
'YNorm': [ynorm]})
return out
def dropout(x,
dropout_prob,
is_test=False,
seed=None,
name=None,
dropout_implementation="downgrade_in_infer"):
"""
Computes dropout.
Drop or keep each element of `x` independently. Dropout is a regularization
technique for reducing overfitting by preventing neuron co-adaption during
training. The dropout operator randomly sets (according to the given dropout
probability) the outputs of some units to zero, while others are remain
unchanged.
dropout op can be removed from the program to make the program more efficient.
Args:
x (Variable): The input tensor variable.
dropout_prob (float): Probability of setting units to zero.
is_test (bool): A flag indicating whether it is in test phrase or not.
seed (int): A Python integer used to create random seeds. If this
parameter is set to None, a random seed is used.
NOTE: If an integer seed is given, always the same output
units will be dropped. DO NOT use a fixed seed in training.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']
1. downgrade_in_infer(default), downgrade the outcome at inference
- train: out = input * mask
- inference: out = input * (1.0 - dropout_prob)
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
2. upscale_in_train, upscale the outcome at training time
- train: out = input * mask / ( 1.0 - dropout_prob )
- inference: out = input
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
Returns:
Variable: A tensor variable is the shape with `x`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
droped = fluid.layers.dropout(x, dropout_prob=0.5)
"""
helper = LayerHelper('dropout', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
mask = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
seed = helper.main_program.random_seed
helper.append_op(
type='dropout',
inputs={'X': [x]},
outputs={'Out': [out],
'Mask': [mask]},
attrs={
'dropout_prob': dropout_prob,
'is_test': is_test,
'fix_seed': seed is not None,
'seed': seed if seed is not None else 0,
'dropout_implementation': dropout_implementation,
})
return out
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
"""
**Cross Entropy Layer**
This layer computes the cross entropy between `input` and `label`. It
supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
.. math::
Y[i] = -\log(X[i, Label[i]])
2) Soft-label cross-entropy:
`soft_label = True`, `Label[i, j]` indicates the soft label of class j
for sample i:
.. math::
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summation of each row of `label`
equals one.
3) One-hot cross-entropy with vecterized `label`:
As a special case of 2), when each row of 'label' has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.
Args:
input (Variable|list): a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes. This
input is a probability computed by the previous
operator, which is almost always the result of
a softmax operator.
label (Variable|list): the ground truth which is a 2-D tensor. When
`soft_label` is set to `False`, `label` is a
tensor<int64> with shape [N x 1]. When
`soft_label` is set to `True`, `label` is a
tensor<float/double> with shape [N x D].
soft_label (bool): a flag indicating whether to
interpretate the given labels as soft
labels. Default: `False`.
ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
if soft_label is set to False. Default: kIgnoreIndex
Returns:
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
ValueError:
1. the 1st dimension of ``input`` and ``label`` are not equal.
2. when ``soft_label == True``, and the 2nd dimension of
``input`` and ``label`` are not equal.
3. when ``soft_label == False``, and the 2nd dimension of
``label`` is not 1.
Examples:
.. code-block:: python
import paddle.fluid as fluid
classdim = 7
x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
if not soft_label:
return cross_entropy2(input, label, ignore_index)
helper = LayerHelper('cross_entropy', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='cross_entropy',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out]},
attrs={"soft_label": soft_label,
"ignore_index": ignore_index})
return out
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
helper = LayerHelper('cross_entropy2', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='cross_entropy2',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out],
'MatchX': [match_x],
'XShape': [xshape]},
attrs={'ignore_index': ignore_index})
return out
def bpr_loss(input, label, name=None):
"""
**Bayesian Personalized Ranking Loss Operator**
This operator belongs to pairwise ranking loss. Label is the desired item.
The loss at a given point in one session is defined as:
.. math::
Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
Learn more details by reading paper <session-based recommendations with recurrent
neural networks>.
Args:
input (Variable|list): a 2-D tensor with shape [N x D], where N is the
batch size and D is the number of classes.
This input is not probability but logits.
label (Variable|list): the ground truth which is a 2-D tensor. `label`
is a tensor<int64> with shape [N x 1].
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically. Default: None.
Returns:
A 2-D tensor with shape [N x 1], the bpr loss.
Examples:
.. code-block:: python
import paddle.fluid as fluid
neg_size = 10
label = fluid.layers.data(
name="label", shape=[1], dtype="int64")
predict = fluid.layers.data(
name="predict", shape=[neg_size + 1], dtype="float32")
cost = fluid.layers.bpr_loss(input=predict, label=label)
"""
helper = LayerHelper('bpr_loss', **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='bpr_loss',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out]})
return out
def square_error_cost(input, label):
"""
**Square error cost layer**
This layer accepts input predictions and target label and returns the
squared error cost.
For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:
.. math::
Out = (X - Y)^2
In the above equation:
* :math:`X`: Input predictions, a tensor.
* :math:`Y`: Input labels, a tensor.
* :math:`Out`: Output value, same shape with :math:`X`.
Args:
input (Variable): Input tensor, has predictions.
label (Variable): Label tensor, has target labels.
Returns:
Variable: The tensor variable storing the element-wise squared error \
difference of input and label.
Examples:
.. code-block:: python
import paddle.fluid as fluid
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
"""
helper = LayerHelper('square_error_cost', **locals())
minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='elementwise_sub',
inputs={'X': [input],
'Y': [label]},
outputs={'Out': [minus_out]})
square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='square', inputs={'X': [minus_out]},
outputs={'Out': [square_out]})
return square_out
@templatedoc()
def chunk_eval(input,
label,
chunk_scheme,
num_chunk_types,
excluded_chunk_types=None,
seq_length=None):
"""
**Chunk Evaluator**
This function computes and outputs the precision, recall and
F1-score of chunk detection.
For some basics of chunking, please refer to
`Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
Here is a NER example of labeling for these tagging schemes:
.. code-block:: python
====== ====== ====== ===== == ============ ===== ===== ===== == =========
Li Ming works at Agricultural Bank of China in Beijing.
====== ====== ====== ===== == ============ ===== ===== ===== == =========
IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC
IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC
IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC
IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC
====== ====== ====== ===== == ============ ===== ===== ===== == =========
There are three chunk types(named entity types) including PER(person), ORG(organization)
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
.. code-block:: python
tag_type = label % num_tag_type
chunk_type = label / num_tag_type
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
is the num of chunk types, and `tag_type` get its value from the following table.
.. code-block:: python
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
PER and LOC. To satisfy the above equations, the label map can be like this:
.. code-block:: python
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
It's not hard to verify the equations noting that the num of chunk types
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
I-LOC is 2, which consistent with the results from the equations.
Args:
input (Variable): prediction output of the network.
label (Variable): label of the test data set.
chunk_scheme (str): ${chunk_scheme_comment}
num_chunk_types (int): ${num_chunk_types_comment}
excluded_chunk_types (list): ${excluded_chunk_types_comment}
seq_length(Variable): 1-D Tensor specifying sequence length when input and label are Tensor type.
Returns:
tuple: tuple containing: precision, recall, f1_score,
num_infer_chunks, num_label_chunks,
num_correct_chunks
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_size = 10000
label_dict_len = 7
sequence = fluid.layers.data(
name='id', shape=[1], lod_level=1, dtype='int64')
embedding = fluid.layers.embedding(
input=sequence, size=[dict_size, 512])
hidden = fluid.layers.fc(input=embedding, size=512)
label = fluid.layers.data(
name='label', shape=[1], lod_level=1, dtype='int32')
crf = fluid.layers.linear_chain_crf(
input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
crf_decode = fluid.layers.crf_decoding(
input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
fluid.layers.chunk_eval(
input=crf_decode,
label=label,
chunk_scheme="IOB",
num_chunk_types=(label_dict_len - 1) / 2)
"""
helper = LayerHelper("chunk_eval", **locals())
# prepare output
precision = helper.create_variable_for_type_inference(dtype="float32")
recall = helper.create_variable_for_type_inference(dtype="float32")
f1_score = helper.create_variable_for_type_inference(dtype="float32")
num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
num_correct_chunks = helper.create_variable_for_type_inference(
dtype="int64")
this_input = {"Inference": [input], "Label": [label]}
if seq_length:
this_input["SeqLength"] = [seq_length]
helper.append_op(
type="chunk_eval",
inputs=this_input,
outputs={
"Precision": [precision],
"Recall": [recall],
"F1-Score": [f1_score],
"NumInferChunks": [num_infer_chunks],
"NumLabelChunks": [num_label_chunks],
"NumCorrectChunks": [num_correct_chunks]
},
attrs={
"num_chunk_types": num_chunk_types,
"chunk_scheme": chunk_scheme,
"excluded_chunk_types": excluded_chunk_types or []
})
return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
num_correct_chunks)
@templatedoc()
def sequence_conv(input,
num_filters,
filter_size=3,
filter_stride=1,
padding=True,
padding_start=None,
bias_attr=None,
param_attr=None,
act=None,
name=None):
"""
The sequence_conv receives input sequences with variable length and other convolutional
configuration parameters for the filter and stride to apply the convolution operation.
It fills all-zero padding data on both sides of the sequence by default to ensure that
the output is the same length as the input. You can customize the padding behavior by
configuring the parameter :attr:`padding\_start`.
**Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.
.. code-block:: text
Here we'll illustrate the details of the padding operation:
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
* Case1:
If padding_start is -1 and filter_size is 3.
The length of padding data is calculated as follows:
up_pad_len = max(0, -padding_start) = 1
down_pad_len = max(0, filter_size + padding_start - 1) = 1
The output of the input sequence after padding is:
data_aftet_padding = [[0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0 ]
[0, 0, d1, d2, 0, 0 ]]
It will be multiplied by the filter weight to get the final output.
Args:
input (Variable): ${x_comment}
num_filters (int): the number of filters.
filter_size (int): the height of filter, the width is hidden size by default.
filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
future. Currently, it will always pad input to make sure the length of the output is
the same as input whether :attr:`padding` is set true or false. Because the length of
input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
result to not be computed correctly. These padding data will not be trainable or updated
while trainnig.
padding_start (int|None): It is used to indicate the start index for padding the input
sequence, which can be negative. The negative number means to pad
:attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
The positive number means to skip :attr:`padding_start` time-steps of each instance,
and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
at the end of the sequence to ensure that the output is the same length as the input.
If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
is padded at the end of each input sequence.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: output of sequence_conv
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [filter_size * input.shape[1], num_filters]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_variable_for_type_inference(dtype)
if padding_start is None:
padding_start = -int(filter_size // 2)
helper.append_op(
type='sequence_conv',
inputs={
'X': [input],
'Filter': [filter_param],
},
outputs={"Out": pre_bias},
attrs={
'contextStride': filter_stride,
'contextStart': padding_start,
'contextLength': filter_size,
})
pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)
def sequence_softmax(input, use_cudnn=False, name=None):
"""
This function computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of
input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
is the sum of the length of all sequences.
For i-th sequence in a mini-batch:
.. math::
Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}
For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
:math:`X[5:7, :]`, and :math:`N` turns out to be 7.
Args:
input (Variable): The input variable which is a LoDTensor.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
library is installed. Default: False.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: output of sequence_softmax
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_softmax",
inputs={"X": input},
outputs={"Out": softmax_out},
attrs={"use_cudnn": use_cudnn})
return softmax_out
def softmax(input, use_cudnn=False, name=None, axis=-1):
"""
The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input.
The dimension :attr:`axis` of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is the same as the dimension :attr:`axis` of the input
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
K-dimensional vector of real values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
For each row :math:`i` and each column :math:`j` in the matrix, we have:
.. math::
Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
Args:
input (Variable): The input variable.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
library is installed. To improve numerical stablity, set use_cudnn to \
False by default. Default: False
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
axis (int): The index of dimension to perform softmax calculations, it should
be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
input variable. Default: -1.
Returns:
Variable: output of softmax
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2], dtype='float32')
fc = fluid.layers.fc(input=x, size=10)
# perform softmax in the second dimension
softmax = fluid.layers.softmax(input=fc, axis=1)
# perform softmax in the last dimension
softmax = fluid.layers.softmax(input=fc, axis=-1)
"""
helper = LayerHelper('softmax', **locals())
dtype = helper.input_dtype()
softmax_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="softmax",
inputs={"X": input},
outputs={"Out": softmax_out},
attrs={"axis": axis,
"use_cudnn": use_cudnn})
return softmax_out
def conv2d(input,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None):
"""
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
channels, H is the height of the feature, and W is the width of the feature.
Filter is in MCHW format, where M is the number of output image channels,
C is the number of input image channels, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input image channels divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input (Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None
Returns:
Variable: The tensor variable storing the convolution and \
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
"""
num_channels = input.shape[1]
assert param_attr is not False, "param_attr should not be False here."
l_type = 'conv2d'
if (num_channels == groups and num_filters % num_channels == 0 and
not use_cudnn):
l_type = 'depthwise_conv2d'
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
stride = utils.convert_to_list(stride, 2, 'stride')
padding = utils.convert_to_list(padding, 2, 'padding')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
input_shape = input.shape
filter_shape = [num_filters, int(num_filter_channels)] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[1] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
filter_param = helper.create_parameter(
attr=helper.param_attr,
shape=filter_shape,
dtype=dtype,
default_initializer=_get_default_param_initializer())
pre_bias = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type=l_type,
inputs={
'Input': input,
'Filter': filter_param,
},
outputs={"Output": pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
'fuse_relu_before_depthwise_conv': False
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
return helper.append_activation(pre_act)
def conv3d(input,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None):
"""
**Convlution3D Layer**
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCDHW format. Where N is batch size C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args:
input (Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: The tensor variable storing the convolution and \
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
"""
l_type = 'conv3d'
assert param_attr is not False, "param_attr should not be False here."
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
num_channels = input.shape[1]
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
stride = utils.convert_to_list(stride, 3, 'stride')
padding = utils.convert_to_list(padding, 3, 'padding')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
input_shape = input.shape
filter_shape = [num_filters, num_filter_channels] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
2] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
filter_param = helper.create_parameter(
attr=helper.param_attr,
shape=filter_shape,
dtype=dtype,
default_initializer=_get_default_param_initializer())
pre_bias = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type=l_type,
inputs={
'Input': input,
'Filter': filter_param,
},
outputs={"Output": pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
return helper.append_activation(pre_act)
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
"""
This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
on top of the input using pool_type mentioned in the parameters.
It supports four pool_type:
- average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
- sum: :math:`Out[i] = \sum_jX_{ij}`
- sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
- max: :math:`Out[i] = max(X_i)`
.. code-block:: text
x is a 1-level LoDTensor and **pad_value** = 0.0:
x.lod = [[2, 3, 2, 0]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [4, 1]
with condition len(x.lod[-1]) == out.dims[0]
for different pool_type:
average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
sum : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
sqrt : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
last : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
first : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
and all above 0.0 = **pad_value**.
Args:
input (variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
It supports average, sum, sqrt and max.
is_test (bool): Used to distinguish training from scoring mode. Default False.
pad_value (float): Used to pad the pooling result for empty input sequence.
Returns:
The sequence pooling variable which is a Tensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
max_index = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_pool",
inputs={"X": input},
outputs={"Out": pool_out,
"MaxIndex": max_index},
attrs={
"pooltype": pool_type.upper(),
"is_test": is_test,
"pad_value": pad_value
})
# when pool_type is max, variable max_index is initialized,
# so we stop the gradient explicitly here
if pool_type == 'max':
max_index.stop_gradient = True
return pool_out
@templatedoc()
def sequence_concat(input, name=None):
"""
${comment}
Args:
input(list): List of Variables to be concatenated.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: Output variable of the concatenation.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10], dtype='float32')
out = fluid.layers.sequence_concat(input=[x, y])
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
return out
def sequence_first_step(input):
"""
This function gets the first step of sequence.
.. code-block:: text
x is a 1-level LoDTensor:
x.lod = [[2, 3, 2]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [3, 1]
with condition len(x.lod[-1]) == out.dims[0]
out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
Returns:
The sequence's first step variable which is a Tensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
return sequence_pool(input=input, pool_type="first")
def sequence_last_step(input):
"""
This function gets the last step of sequence.
.. code-block:: text
x is a 1-level LoDTensor:
x.lod = [[2, 3, 2]]
x.data = [1, 3, 2, 4, 6, 5, 1]
x.dims = [7, 1]
then output is a Tensor:
out.dim = [3, 1]
with condition len(x.lod[-1]) == out.dims[0]
out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
Returns:
The sequence's last step variable which is a Tensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
return sequence_pool(input=input, pool_type="last")
def sequence_slice(input, offset, length, name=None):
"""
**Sequence Slice Layer**
The layer crops a subsequence from given sequence with given start
offset and subsequence length.
It only supports sequence data (LoDTensor with lod_level equal to 1).
.. code-block:: text
- Case:
Given the input Variable **input**:
input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
input.lod = [[3, 2]],
input.dims = (5, 2),
with offset.data = [[0], [1]] and length.data = [[2], [1]],
the output Variable will be
out.data = [[a1, a2], [b1, b2], [e1, e2]],
out.lod = [[2, 1]],
out.dims = (3, 2).
Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0.
Args:
input(Variable): The input Variable which consists of the complete
sequences.
offset(Variable): The offset to slice each sequence.
length(Variable): The length of each subsequence.
name(str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The output subsequences.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
seqs = fluid.layers.data(name='x', shape=[10, 5],
dtype='float32', lod_level=1)
offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
offset.stop_gradient = True
length.stop_gradient = True
helper.append_op(
type="sequence_slice",
inputs={"X": input,
"Offset": offset,
"Length": length},
outputs={"Out": out})
return out
@templatedoc()
def pool2d(input,
pool_size=-1,
pool_type="max",
pool_stride=1,
pool_padding=0,
global_pooling=False,
use_cudnn=True,
ceil_mode=False,
name=None,
exclusive=True):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true
Returns:
Variable: The pooling result.
Raises:
ValueError: If 'pool_type' is not "max" nor "avg"
ValueError: If 'global_pooling' is False and 'pool_size' is -1
ValueError: If 'use_cudnn' is not a bool value.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
pool2d = fluid.layers.pool2d(
input=data,
pool_size=2,
pool_type='max',
pool_stride=1,
global_pooling=False)
"""
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if global_pooling is False and pool_size == -1:
raise ValueError(
"When the global_pooling is False, pool_size must be passed "
"and be a valid value. Received pool_size: " + str(pool_size))
pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
l_type = 'pool2d'
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type=l_type,
inputs={"X": input},
outputs={"Out": pool_out},
attrs={
"pooling_type": pool_type,
"ksize": pool_size,
"global_pooling": global_pooling,
"strides": pool_stride,
"paddings": pool_padding,
"use_cudnn": use_cudnn,
"ceil_mode": ceil_mode,
"use_mkldnn": False,
"exclusive": exclusive,
})
return pool_out
@templatedoc()
def pool3d(input,
pool_size=-1,
pool_type="max",
pool_stride=1,
pool_padding=0,
global_pooling=False,
use_cudnn=True,
ceil_mode=False,
name=None,
exclusive=True):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCDHW, where N is batch size, C is
the number of channels, D is the depth of the feature,
H is the height of the feature, and W is the width
of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size
is a tuple or list, it must contain three integers,
(pool_size_Depth, pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be the cube of an int.
pool_type (string): ${pooling_type_comment}
pool_stride (int): stride of the pooling layer.
pool_padding (int): padding size.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name (str): A name for this layer(optional). If set None, the layer
will be named automatically.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is true
Returns:
Variable: output of pool3d layer.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[3, 32, 32, 32], dtype='float32')
pool3d = fluid.layers.pool3d(
input=data,
pool_size=2,
pool_type='max',
pool_stride=1,
global_pooling=False)
"""
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if global_pooling is False and pool_size == -1:
raise ValueError(
"When the global_pooling is False, pool_size must be passed "
"and be a valid value. Received pool_size: " + str(pool_size))
pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
l_type = "pool3d"
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type=l_type,
inputs={"X": input},
outputs={"Out": pool_out},
attrs={
"pooling_type": pool_type,
"ksize": pool_size,
"global_pooling": global_pooling,
"strides": pool_stride,
"paddings": pool_padding,
"use_cudnn": use_cudnn,
"ceil_mode": ceil_mode,
"use_mkldnn": False,
"exclusive": exclusive,
})
return pool_out
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
pool_size,
pool_type="max",
require_index=False,
name=None):
"""
**Adaptive Pool2d Operator**
The adaptive_pool2d operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature. Parameters(pool_size) should contain two elements which
represent height and width, respectively. Also the H and W dimensions of output(Out)
is same as Parameter(pool_size).
For average adaptive pool2d:
.. math::
hstart &= floor(i * H_{in} / H_{out})
hend &= ceil((i + 1) * H_{in} / H_{out})
wstart &= floor(j * W_{in} / W_{out})
wend &= ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point will be returned along
with outputs. It cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The pooling result.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
ValueError: 'pool_size' should be a list or tuple with length as 2.
Examples:
.. code-block:: python
# suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
# output shape is [N, C, m, n], adaptive pool divide H and W dimentions
# of input data into m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive average pool performs calculations as follow:
#
# for i in range(m):
# for j in range(n):
# hstart = floor(i * H / m)
# hend = ceil((i + 1) * H / m)
# wstart = floor(i * W / n)
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='avg')
"""
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if pool_type == "avg" and require_index:
raise ValueError(
"invalid setting 'require_index' true when 'pool_type' is 'avg'.")
pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
if pool_type == "max":
l_type = 'max_pool2d_with_index'
else:
l_type = "pool2d"
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
outputs = {"Out": pool_out}
if pool_type == "max":
mask = helper.create_variable_for_type_inference(dtype)
outputs["Mask"] = mask
helper.append_op(
type=l_type,
inputs={"X": input},
outputs=outputs,
attrs={
"pooling_type": pool_type,
"ksize": pool_size,
"adaptive": True,
})
return (pool_out, mask) if require_index else pool_out
@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
pool_size,
pool_type="max",
require_index=False,
name=None):
"""
**Adaptive Pool3d Operator**
The adaptive_pool3d operation calculates the output based on the input, pool_size,
pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, D is the depth of the feature, H is the height of
the feature, and W is the width of the feature. Parameters(pool_size) should contain
three elements which represent height and width, respectively. Also the D, H and W
dimensions of output(Out) is same as Parameter(pool_size).
For average adaptive pool3d:
.. math::
dstart &= floor(i * D_{in} / D_{out})
dend &= ceil((i + 1) * D_{in} / D_{out})
hstart &= floor(j * H_{in} / H_{out})
hend &= ceil((j + 1) * H_{in} / H_{out})
wstart &= floor(k * W_{in} / W_{out})
wend &= ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCDHW, where N is batch size, C is
the number of channels, D is the depth of the feature,
H is the height of the feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain three integers, (Depth, Height, Width).
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point will be returned along
with outputs. It cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The pooling result.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
ValueError: 'pool_size' should be a list or tuple with length as 2.
Examples:
.. code-block:: python
# suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive average pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[3, 32, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3, 3],
pool_type='avg')
"""
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if pool_type == "avg" and require_index:
raise ValueError(
"invalid setting 'require_index' true when 'pool_type' is 'avg'.")
pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
if pool_type == "max":
l_type = 'max_pool3d_with_index'
else:
l_type = "pool3d"
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
outputs = {"Out": pool_out}
if pool_type == "max":
mask = helper.create_variable_for_type_inference(dtype)
outputs["Mask"] = mask
helper.append_op(
type=l_type,
inputs={"X": input},
outputs=outputs,
attrs={
"pooling_type": pool_type,
"ksize": pool_size,
"adaptive": True,
})
return (pool_out, mask) if require_index else pool_out
def batch_norm(input,
act=None,
is_test=False,
momentum=0.9,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
data_layout='NCHW',
in_place=False,
name=None,
moving_mean_name=None,
moving_variance_name=None,
do_model_average_for_mean_and_var=False,
fuse_with_relu=False,
use_global_stats=False):
"""
**Batch Normalization Layer**
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
for more details.
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
When use_global_stats = True, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
They are global (or running) statistics. (It usually got from the
pre-trained model.)
The training and testing (or inference) have the same behavior:
.. math::
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta
Note:
if build_strategy.sync_batch_norm=True, the batch_norm in network will use
sync_batch_norm automatically.
Args:
input(variable): The rank of input variable can be 2, 3, 4, 5.
act(string, Default None): Activation type, linear|relu|prelu|...
is_test (bool, Default False): A flag indicating whether it is in
test phrase or not.
momentum(float, Default 0.9): The value used for the moving_mean and
moving_var computation. The updated formula is:
:math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
:math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
Default is 0.9.
epsilon(float, Default 1e-05): A value added to the denominator for
numerical stability. Default is 1e-5.
param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
If the Initializer of the param_attr is not set, the parameter is initialized
with Xavier. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
Default: None.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory.
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it
is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
will save global mean with the string.
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
will save global variance with the string.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
fuse_with_relu (bool): if True, this OP performs relu after batch norm.
use_global_stats(bool, Default False): Whether to use global mean and
variance. In inference or test mode, set use_global_stats to true
or is_test to true, and the behavior is equivalent.
In train mode, when setting use_global_stats True, the global mean
and variance are also used during train period.
Returns:
Variable: A tensor variable which is the result after applying batch normalization on the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.batch_norm(input=hidden1)
"""
assert bias_attr is not False, "bias_attr should not be False in batch_norm."
helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype()
# use fp32 for bn parameter
if dtype == core.VarDesc.VarType.FP16:
dtype = core.VarDesc.VarType.FP32
input_shape = input.shape
if data_layout == 'NCHW':
channel_num = input_shape[1]
else:
if data_layout == 'NHWC':
channel_num = input_shape[-1]
else:
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [channel_num]
# create parameter
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
default_initializer=Constant(1.0))
bias = helper.create_parameter(
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
mean = helper.create_parameter(
attr=ParamAttr(
name=moving_mean_name,
initializer=Constant(0.0),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=dtype)
mean.stop_gradient = True
variance = helper.create_parameter(
attr=ParamAttr(
name=moving_variance_name,
initializer=Constant(1.0),
trainable=False,
do_model_average=do_model_average_for_mean_and_var),
shape=param_shape,
dtype=dtype)
variance.stop_gradient = True
# create output
# mean and mean_out share the same memory
mean_out = mean
# variance and variance out share the same memory
variance_out = variance
saved_mean = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
saved_variance = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
dtype)
helper.append_op(
type="batch_norm",
inputs={
"X": input,
"Scale": scale,
"Bias": bias,
"Mean": mean,
"Variance": variance
},
outputs={
"Y": batch_norm_out,
"MeanOut": mean_out,
"VarianceOut": variance_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance
},
attrs={
"momentum": momentum,
"epsilon": epsilon,
"is_test": is_test,
"data_layout": data_layout,
"use_mkldnn": False,
"fuse_with_relu": fuse_with_relu,
"use_global_stats": use_global_stats
})
return helper.append_activation(batch_norm_out)
def data_norm(input,
act=None,
epsilon=1e-05,
param_attr=None,
data_layout='NCHW',
in_place=False,
name=None,
moving_mean_name=None,
moving_variance_name=None,
do_model_average_for_mean_and_var=False):
"""
**Data Normalization Layer**
Can be used as a normalizer function for conv2d and fully_connected operations.
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`
:math:`input` is the input features over a mini-batch.
.. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
Args:
input(variable): The input variable which is a LoDTensor.
act(string, Default None): Activation type, linear|relu|prelu|...
epsilon(float, Default 1e-05):
param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory.
name(string, Default None): A name for this layer(optional). If set None, the layer
will be named automatically.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
Returns:
Variable: A tensor variable which is the result after applying data normalization on the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
hidden1 = fluid.layers.data(name="hidden1", shape=[200])
hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
"""
helper = LayerHelper('data_norm', **locals())
dtype = helper.input_dtype()
input_shape = input.shape
if data_layout == 'NCHW':
channel_num = input_shape[1]
else:
if data_layout == 'NHWC':
channel_num = input_shape[-1]
else:
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [channel_num]
batch_size_default = 1e4
batch_sum_default = 0.0
batch_square_sum_default = 1e4
if param_attr and isinstance(param_attr, dict):
batch_size_default = param_attr.get("batch_size", 1e4)
batch_sum_default = param_attr.get("batch_sum", 0.0)
batch_square_sum_default = param_attr.get("batch_square", 1e4)
# create parameter
batch_size = helper.create_parameter(
attr=ParamAttr(
name=name + '.batch_size',
initializer=Constant(value=float(batch_size_default)),
trainable=True),
shape=param_shape,
dtype=input.dtype)
batch_sum = helper.create_parameter(
attr=ParamAttr(
name=name + '.batch_sum',
initializer=Constant(value=float(batch_sum_default)),
trainable=True),
shape=param_shape,
dtype=input.dtype)
batch_square_sum = helper.create_parameter(
attr=ParamAttr(
name=name + '.batch_square_sum',
initializer=Constant(value=float(batch_square_sum_default)),
trainable=True),
shape=param_shape,
dtype=input.dtype)
means = helper.create_variable(dtype=dtype, stop_gradient=True)
scales = helper.create_variable(dtype=dtype, stop_gradient=True)
data_norm_out = input if in_place else helper.create_variable(dtype=dtype)
helper.append_op(
type="data_norm",
inputs={
"X": input,
"BatchSize": batch_size,
"BatchSum": batch_sum,
"BatchSquareSum": batch_square_sum
},
outputs={"Y": data_norm_out,
"Means": means,
"Scales": scales},
attrs={"epsilon": epsilon})
return helper.append_activation(data_norm_out)
@templatedoc()
def layer_norm(input,
scale=True,
shift=True,
begin_norm_axis=1,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None,
name=None):
"""
${comment}
The formula is as follows:
.. math::
\\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i
\\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}
h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)
* :math:`a`: the vector representation of the summed inputs to the neurons
in that layer.
* :math:`H`: the number of hidden units in a layers
* :math:`g`: the trainable scale parameter.
* :math:`b`: the trainable bias parameter.
Args:
input(Variable): The input tensor variable.
scale(bool): Whether to learn the adaptive gain :math:`g` after
normalization. Default True.
shift(bool): Whether to learn the adaptive bias :math:`b` after
normalization. Default True.
begin_norm_axis(int): The normalization will be performed along
dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
Default 1.
epsilon(float): The small value added to the variance to prevent
division by zero. Default 1e-05.
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as scale. The
:attr:`param_attr` is initialized as 1 if it is added. Default None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default None.
act(str): Activation to be applied to the output of layer normalizaiton.
Default None.
name(str): The name of this layer. It is optional. Default None, and a
unique name would be generated automatically.
Returns:
${y_comment}
Examples:
>>> import paddle.fluid as fluid
>>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
"""
assert in_dygraph_mode(
) is not True, "please use FC instead of fc in dygraph mode!"
helper = LayerHelper('layer_norm', **locals())
dtype = helper.input_dtype()
# create intput and parameters
inputs = {'X': input}
input_shape = input.shape
param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
if scale:
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
default_initializer=Constant(1.0))
inputs['Scale'] = scale
if shift:
assert bias_attr is not False
bias = helper.create_parameter(
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
# create output
mean_out = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
variance_out = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
layer_norm_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="layer_norm",
inputs=inputs,
outputs={
"Y": layer_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": epsilon,
"begin_norm_axis": begin_norm_axis})
return helper.append_activation(layer_norm_out)
@templatedoc()
def group_norm(input,
groups,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None,
data_layout='NCHW',
name=None):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
input(Variable): The input tensor variable.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
Examples:
>>> import paddle.fluid as fluid
>>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
>>> dtype='float32')
>>> x = fluid.layers.group_norm(input=data, groups=4)
"""
helper = LayerHelper('group_norm', **locals())
dtype = helper.input_dtype()
# create intput and parameters
inputs = {'X': input}
input_shape = input.shape
if data_layout != 'NCHW':
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [input_shape[1]]
if param_attr:
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
default_initializer=Constant(1.0))
inputs['Scale'] = scale
if bias_attr:
bias = helper.create_parameter(
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
# create output
mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
group_norm_out = helper.create_variable(dtype=dtype)
helper.append_op(
type="group_norm",
inputs=inputs,
outputs={
"Y": group_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": epsilon,
"groups": groups})
return helper.append_activation(group_norm_out)
@templatedoc()
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
"""
**Spectral Normalization Layer**
This layer calculates the spectral normalization value of weight parameters of
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
Parameters. Calculations are showed as follows.
Step 1:
Generate vector U in shape of [H], and V in shape of [W].
While H is the :attr:`dim` th dimension of the input weights,
and W is the product result of remaining dimensions.
Step 2:
:attr:`power_iters` shoule be a positive interger, do following
calculations with U and V for :attr:`power_iters` rounds.
.. math::
\mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
\mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
Step 3:
Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
.. math::
\sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
\mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
weight(${weight_type}): ${weight_comment}
dim(int): ${dim_comment}
power_iters(int): ${power_iters_comment}
eps(float): ${eps_comment}
name (str): The name of this layer. It is optional.
Returns:
Variable: A tensor variable of weight parameters after spectral normalization.
Examples:
.. code-block:: python
import paddle.fluid as fluid
weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32],
append_batch_size=False, dtype='float32')
x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
"""
helper = LayerHelper('spectral_norm', **locals())
dtype = weight.dtype
# create intput and parameters
inputs = {'Weight': weight}
input_shape = weight.shape
h = input_shape[dim]
w = np.prod(input_shape) // h
u = helper.create_parameter(
attr=ParamAttr(),
shape=[h],
dtype=dtype,
default_initializer=Normal(0., 1.))
u.stop_gradient = True
inputs['U'] = u
v = helper.create_parameter(
attr=ParamAttr(),
shape=[w],
dtype=dtype,
default_initializer=Normal(0., 1.))
inputs['V'] = v
v.stop_gradient = True
# create output
out = helper.create_variable(dtype=dtype)
helper.append_op(
type="spectral_norm",
inputs=inputs,
outputs={"Out": out, },
attrs={
"dim": dim,
"power_iters": power_iters,
"eps": eps,
})
return out
def conv2d_transpose(input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None):
"""
**Convlution2D transpose layer**
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references
`therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]
Note:
if output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`,
conv2d_transpose can compute the kernel size automatically.
Args:
input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups = 1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: True.
Returns:
Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
"""
assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
input_channel = input.shape[1]
op_type = 'conv2d_transpose'
if (input_channel == groups and num_filters == input_channel and
not use_cudnn):
op_type = 'depthwise_conv2d_transpose'
helper = LayerHelper(op_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv2d_transpose must be Variable")
padding = utils.convert_to_list(padding, 2, 'padding')
stride = utils.convert_to_list(stride, 2, 'stride')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
h_in = input.shape[2]
w_in = input.shape[3]
filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
padding[0] - 1) // dilation[0] + 1
filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
padding[1] - 1) // dilation[1] + 1
filter_size = [filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(filter_size, 2,
'conv2d_transpose.filter_size')
if output_size is None:
output_size = []
elif isinstance(output_size, list) or isinstance(output_size, int):
output_size = utils.convert_to_list(output_size, 2, 'output_size')
else:
raise ValueError("output_size should be list or int")
padding = utils.convert_to_list(padding, 2, 'padding')
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=op_type,
inputs={'Input': [input],
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'output_size': output_size,
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
out = helper.append_activation(pre_act)
return out
def conv3d_transpose(input,
num_filters,
output_size=None,
filter_size=None,
padding=0,
stride=1,
dilation=1,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
name=None):
"""
**Convlution3D transpose layer**
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Args:
input(Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of the filter. It is as same as the output
image channel.
output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain three integers, (image_D, image_H, image_W). This
parameter only works when filter_size is None.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to
calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups(int): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: groups=1
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
"""
assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals())
if not isinstance(input, Variable):
raise TypeError("Input of conv3d_transpose must be Variable")
input_channel = input.shape[1]
padding = utils.convert_to_list(padding, 3, 'padding')
stride = utils.convert_to_list(stride, 3, 'stride')
dilation = utils.convert_to_list(dilation, 3, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
if filter_size is None:
if output_size is None:
raise ValueError("output_size must be set when filter_size is None")
if isinstance(output_size, int):
output_size = [output_size, output_size]
d_in = input.shape[2]
h_in = input.shape[3]
w_in = input.shape[4]
filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
padding[0] - 1) // dilation[0] + 1
filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
padding[1] - 1) // dilation[1] + 1
filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
padding[2] - 1) // dilation[2] + 1
filter_size = [filter_size_d, filter_size_h, filter_size_w]
else:
filter_size = utils.convert_to_list(filter_size, 3,
'conv3d_transpose.filter_size')
groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=l_type,
inputs={'Input': [input],
'Filter': [img_filter]},
outputs={'Output': pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
out = helper.append_activation(pre_act)
return out
def sequence_expand(x, y, ref_level=-1, name=None):
"""Sequence Expand Layer. This layer will expand the input variable **x**
according to specified level lod of **y**. Please note that lod level of
**x** is at most 1 and rank of **x** is at least 2. When rank of **x**
is greater than 2, then it would be viewed as a 2-D tensor.
Following examples will explain how sequence_expand works:
.. code-block:: text
* Case 1
x is a LoDTensor:
x.lod = [[2, 2]]
x.data = [[a], [b], [c], [d]]
x.dims = [4, 1]
y is a LoDTensor:
y.lod = [[2, 2],
[3, 3, 1, 1]]
ref_level: 0
then output is a 1-level LoDTensor:
out.lod = [[2, 2, 2, 2]]
out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
out.dims = [8, 1]
* Case 2
x is a Tensor:
x.data = [[a], [b], [c]]
x.dims = [3, 1]
y is a LoDTensor:
y.lod = [[2, 0, 3]]
ref_level: -1
then output is a Tensor:
out.data = [[a], [a], [c], [c], [c]]
out.dims = [5, 1]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a LoDTensor.
ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
refer the last level of lod.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The expanded variable which is a LoDTensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp},
attrs={'ref_level': ref_level})
return tmp
def sequence_expand_as(x, y, name=None):
"""Sequence Expand As Layer. This layer will expand the input variable **x**
according to the zeroth level lod of **y**. Current implementation requires
the level number of Input(Y)'s lod must be 1, and the first dimension of
Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
lod of Input(X) is not considered.
Following examples will explain how sequence_expand_as works:
.. code-block:: text
* Case 1:
Given a 1-level LoDTensor input(X)
X.data = [[a], [b], [c], [d]]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 3, 6, 7, 8]]
ref_level: 0
then we get 1-level LoDTensor
Out.lod = [[0, 3, 6, 7, 8]]
Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
Out.dims = [8, 1]
* Case 2:
Given a common Tensor input(X)
X.data = [[a, b], [c, d], [e, f]]
X.dims = [3, 2]
and input(Y)
Y.lod = [[0, 2, 3, 6]]
ref_level: 0
then we get a common LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
Out.dims = [6, 2]
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a LoDTensor.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The expanded variable which is a LoDTensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = fluid.layers.data(name='x', shape=[10], dtype='float32')
y = fluid.layers.data(name='y', shape=[10, 20],
dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype()
tmp = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sequence_expand_as',
inputs={'X': x,
'Y': y},
outputs={'Out': tmp})
return tmp
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None, name=None):
"""
${comment}
Args:
x(Variable): Input variable which should contain lod information.
pad_value(Variable): The Variable that holds values that will be fill
into padded steps. It can be a scalar or a tensor whose shape
equals to time steps in sequences. If it's a scalar, it will be
automatically broadcasted to the shape of time step.
maxlen(int, default None): The length of padded sequences. It can be
None or any positive int. When it is None, all sequences will be
padded up to the length of the longest one among them; when it a
certain positive value, it must be greater than the length of the
longest original sequence.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The padded sequence batch and the original lengths before
padding. All sequences has the same length.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy
x = fluid.layers.data(name='y', shape=[10, 5],
dtype='float32', lod_level=1)
pad_value = fluid.layers.assign(
input=numpy.array([0.0], dtype=numpy.float32))
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length = helper.create_variable_for_type_inference(dtype)
pad_value.stop_gradient = True
length.stop_gradient = True
if maxlen is None:
maxlen = -1
helper.append_op(
type='sequence_pad',
inputs={'X': x,
'PadValue': pad_value},
outputs={'Out': out,
'Length': length},
attrs={'padded_length': maxlen})
return out, length
def sequence_unpad(x, length, name=None):
"""
**Sequence Unpad Layer**
This layer removes the padding data in the input sequences and convert
them into sequences with actual length as output, identitied by lod
information.
.. code-block:: text
Example:
Given input Variable **x**:
x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0, 9.0, 10.0],
[11.0, 12.0, 13.0, 14.0, 15.0]],
in which there are 3 sequences padded to length 5, and the acutal length
specified by input Variable **length**:
length.data = [[2], [3], [4]],
after unpadding, the output Variable will be:
out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
out.lod = [[2, 3, 4]]
Args:
x(Variable): Input Variable which contains the padded sequences with
equal length.
length(Variable): The Variable that specifies the actual ength of
sequences after unpadding.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The Variable contains the unpadded sequences.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
len = fluid.layers.data(name='length', shape=[1], dtype='int64')
out = fluid.layers.sequence_unpad(x=x, length=len)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
length.stop_gradient = True
helper.append_op(
type='sequence_unpad',
inputs={'X': x,
'Length': length},
outputs={'Out': out})
return out
def beam_search(pre_ids,
pre_scores,
ids,
scores,
beam_size,
end_id,
level=0,
is_accumulated=True,
name=None,
return_parent_idx=False):
"""
Beam search is a classical algorithm for selecting candidate words in a
machine translation task.
Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
for more details.
This layer does the search in beams for one time step. Specifically, it
selects the top-K candidate word ids of current step from :attr:`ids`
according to their :attr:`scores` for all source sentences, where K is
:attr:`beam_size` and :attr:`ids, scores` are predicted results from the
computation cell. If :attr:`ids` is not set, it will be calculated out
according to :attr:`scores`. Additionally, :attr:`pre_ids` and
:attr:`pre_scores` are the output of beam_search at previous step, they
are needed for special use to handle ended candidate translations.
Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
passed in should be accumulated scores. Else, the :attr:`scores` are
considered as the straightforward scores and will be transformed to the
log field and accumulated the :attr:`pre_scores` in this operator.
Length penalty should be done with extra operators before calculating the
accumulated scores if needed.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
pre_ids(Variable): The LodTensor variable which is the output of
beam_search at previous step. It should be a LodTensor with shape
:math:`(batch_size, 1)` and lod
:math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
first step.
pre_scores(Variable): The LodTensor variable which is the output of
beam_search at previous step.
ids(Variable): The LodTensor variable containing the candidates ids.
Its shape should be :math:`(batch_size \\times beam_size, K)`,
where :math:`K` supposed to be :attr:`beam_size`.
scores(Variable): The LodTensor variable containing the accumulated
scores corresponding to :attr:`ids` and its shape is the same as
the shape of :attr:`ids`.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
level(int, default 0): It can be ignored and mustn't change currently.
It means the source level of lod, which is explained as following.
The lod level of :attr:`ids` should be 2. The first level is source
level which describes how many prefixes (branchs) for each source
sentece (beam), and the second level is sentence level which
describes how these candidates belong to the prefix. The paths
linking prefixes and selected candidates are organized and reserved
in lod.
is_accumulated(bool, default True): Whether the input :attr:`score` is
accumulated scores.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
return_parent_idx(bool): Whether to return an extra Tensor variable
preserving the selected_ids' parent indice in pre_ids
in output, which can be used to gather cell states at
the next time step.
Returns:
Variable: The LodTensor tuple containing the selected ids and the \
corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
an extra Tensor variable preserving the selected_ids' parent indice \
is included.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `probs` contains predicted results from the computation
# cell and `pre_ids` and `pre_scores` is the output of beam_search
# at previous step.
beam_size = 4
end_id = 1
pre_ids = fluid.layers.data(
name='pre_id', shape=[1], lod_level=2, dtype='int64')
pre_scores = fluid.layers.data(
name='pre_scores', shape=[1], lod_level=2, dtype='float32')
probs = fluid.layers.data(
name='probs', shape=[10000], dtype='float32')
topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
accu_scores = fluid.layers.elementwise_add(
x=fluid.layers.log(x=topk_scores),
y=fluid.layers.reshape(pre_scores, shape=[-1]),
axis=0)
selected_ids, selected_scores = fluid.layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=end_id)
"""
helper = LayerHelper('beam_search', **locals())
score_type = pre_scores.dtype
id_type = pre_ids.dtype
inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
if ids is not None:
inputs["ids"] = ids
selected_scores = helper.create_variable_for_type_inference(
dtype=score_type)
selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
# parent_idx is a tensor used to gather cell states at the next time
# step. Though lod in selected_ids can also be used to gather by
# sequence_expand, it is not efficient.
# gather_op's index input only supports int32 dtype currently
parent_idx = helper.create_variable_for_type_inference(dtype="int32")
helper.append_op(
type='beam_search',
inputs=inputs,
outputs={
'selected_ids': selected_ids,
'selected_scores': selected_scores,
'parent_idx': parent_idx
},
attrs={
# TODO(ChunweiYan) to assure other value support
'level': level,
'beam_size': beam_size,
'end_id': end_id,
'is_accumulated': is_accumulated,
})
if return_parent_idx:
return selected_ids, selected_scores, parent_idx
else:
return selected_ids, selected_scores
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
"""
Beam Search Decode Layer. This layer constructs the full hypotheses for
each source sentence by walking back along the LoDTensorArray :attr:`ids`
whose lods can be used to restore the path in the beam search tree.
Please see the following demo for a fully beam search usage example:
fluid/tests/book/test_machine_translation.py
Args:
ids(Variable): The LodTensorArray variable containing the selected ids
of all steps.
scores(Variable): The LodTensorArray variable containing the selected
scores of all steps.
beam_size(int): The beam width used in beam search.
end_id(int): The id of end token.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The LodTensor pair containing the generated id sequences \
and the corresponding scores. The shapes and lods of the two \
LodTensor are same. The lod level is 2 and the two levels \
separately indicate how many hypotheses each source sentence has \
and how many ids each hypothesis has.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Suppose `ids` and `scores` are LodTensorArray variables reserving
# the selected ids and scores of all steps
ids = fluid.layers.create_array(dtype='int64')
scores = fluid.layers.create_array(dtype='float32')
finished_ids, finished_scores = fluid.layers.beam_search_decode(
ids, scores, beam_size=5, end_id=0)
"""
helper = LayerHelper('beam_search_decode', **locals())
sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
helper.append_op(
type="beam_search_decode",
inputs={"Ids": ids,
"Scores": scores},
outputs={
"SentenceIds": sentence_ids,
"SentenceScores": sentence_scores
},
attrs={"beam_size": beam_size,
"end_id": end_id})
return sentence_ids, sentence_scores
def lstm_unit(x_t,
hidden_t_prev,
cell_t_prev,
forget_bias=0.0,
param_attr=None,
bias_attr=None,
name=None):
"""Lstm unit layer. The equation of a lstm step is:
.. math::
i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
h_t & = o_t tanh(c_t)
The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
:math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
should be same. The implementation separates the linear transformation and
non-linear transformation apart. Here, we take :math:`i_t` as an example.
The linear transformation is applied by calling a `fc` layer and the
equation is:
.. math::
L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
The non-linear transformation is applied by calling `lstm_unit_op` and the
equation is:
.. math::
i_t = \sigma(L_{i_t})
This layer has two outputs including :math:`h_t` and :math:`c_t`.
Args:
x_t (Variable): The input value of current step, a 2-D tensor with shape
M x N, M for batch size and N for input size.
hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
with shape M x S, M for batch size and S for size of lstm unit.
cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
shape M x S, M for batch size and S for size of lstm unit.
forget_bias (float): The forget bias of lstm unit.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights.
If it is set to None or one attribute of ParamAttr,
lstm_unit will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights. If it is set to False, no bias will be added
to the output units. If it is set to None or one attribute of ParamAttr,
lstm_unit will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
tuple: The hidden value and cell value of lstm unit.
Raises:
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
and **cell_t_prev** not be the same or the 2nd dimensions of
**hidden_t_prev** and **cell_t_prev** not be the same.
Examples:
.. code-block:: python
import paddle.fluid as fluid
dict_dim, emb_dim, hidden_dim = 128, 64, 512
data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
pre_hidden = fluid.layers.data(
name='pre_hidden', shape=[hidden_dim], dtype='float32')
pre_cell = fluid.layers.data(
name='pre_cell', shape=[hidden_dim], dtype='float32')
hidden = fluid.layers.lstm_unit(
x_t=x,
hidden_t_prev=pre_hidden,
cell_t_prev=pre_cell)
"""
helper = LayerHelper('lstm_unit', **locals())
if len(x_t.shape) != 2:
raise ValueError("Rank of x_t must be 2.")
if len(hidden_t_prev.shape) != 2:
raise ValueError("Rank of hidden_t_prev must be 2.")
if len(cell_t_prev.shape) != 2:
raise ValueError("Rank of cell_t_prev must be 2.")
if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
0] != cell_t_prev.shape[0]:
raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
"cell_t_prev must be the same.")
if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
raise ValueError("The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same.")
if bias_attr is None:
bias_attr = ParamAttr()
size = cell_t_prev.shape[1]
concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
fc_out = fc(input=concat_out,
size=4 * size,
param_attr=param_attr,
bias_attr=bias_attr)
dtype = x_t.dtype
c = helper.create_variable_for_type_inference(dtype)
h = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='lstm_unit',
inputs={"X": fc_out,
"C_prev": cell_t_prev},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
return h, c
def reduce_sum(input, dim=None, keep_dim=False, name=None):
"""
Computes the sum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimensions along which the sum is performed. If
:attr:`None`, sum all elements of :attr:`input` and return a
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool|False): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
fluid.layers.reduce_sum(x) # [3.5]
fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6]
fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6]
fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# Each example is followed by the corresponding output tensor.
y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
"""
helper = LayerHelper('reduce_sum', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_sum',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_mean(input, dim=None, keep_dim=False, name=None):
"""
Computes the mean of the input tensor's elements along the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the mean is computed. If
`None`, compute the mean over all elements of :attr:`input`
and return a variable with a single element, otherwise it
must be in the range :math:`[-rank(input), rank(input))`. If
:math:`dim[i] < 0`, the dimension to reduce is
:math:`rank(input) + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set `None`, the layer
will be named automatically.
Returns:
Variable: The reduced mean Variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
fluid.layers.reduce_mean(x) # [0.4375]
fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8]
fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4]
fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the correspending output tensor.
y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
"""
helper = LayerHelper('reduce_mean', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_mean',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_max(input, dim=None, keep_dim=False, name=None):
"""
Computes the maximum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the maximum is computed.
If :attr:`None`, compute the maximum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
fluid.layers.reduce_max(x) # [0.9]
fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9]
fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7]
fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the correspending output tensor.
y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
"""
helper = LayerHelper('reduce_max', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_max',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_min(input, dim=None, keep_dim=False, name=None):
"""
Computes the minimum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimensions along which the minimum is computed.
If :attr:`None`, compute the minimum over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
fluid.layers.reduce_min(x) # [0.1]
fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7]
fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1]
fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the correspending output tensor.
y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
"""
helper = LayerHelper('reduce_min', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_min',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_prod(input, dim=None, keep_dim=False, name=None):
"""
Computes the product of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimensions along which the product is performed. If
:attr:`None`, multipy all elements of :attr:`input` and return a
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool|False): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the correspending output tensor.
x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
fluid.layers.reduce_prod(x) # [0.0002268]
fluid.layers.reduce_prod(x, dim=0) # [0.02, 0.06, 0.3, 0.63]
fluid.layers.reduce_prod(x, dim=-1) # [0.027, 0.0084]
fluid.layers.reduce_prod(x, dim=1,
keep_dim=True) # [[0.027], [0.0084]]
# y is a Tensor variable with shape [2, 2, 2] and elements as below:
# [[[1.0, 2.0], [3.0, 4.0]],
# [[5.0, 6.0], [7.0, 8.0]]]
# Each example is followed by the correspending output tensor.
y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
"""
helper = LayerHelper('reduce_prod', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_prod',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_all(input, dim=None, keep_dim=False, name=None):
"""
Computes the ``logical and`` of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the logical and is computed.
If :attr:`None`, compute the logical and over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
# x is a bool Tensor variable with following elements:
# [[True, False]
# [True, True]]
x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
x = layers.cast(x, 'bool')
out = layers.reduce_all(x) # False
out = layers.reduce_all(x, dim=0) # [True, False]
out = layers.reduce_all(x, dim=-1) # [False, True]
out = layers.reduce_all(x, dim=1, keep_dim=True) # [[False], [True]]
"""
helper = LayerHelper('reduce_all', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_all',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def reduce_any(input, dim=None, keep_dim=False, name=None):
"""
Computes the ``logical or`` of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
dim (list|int|None): The dimension along which the logical or is computed.
If :attr:`None`, compute the logical or over all elements of
:attr:`input` and return a Tensor variable with a single element,
otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
keep_dim (bool): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
# x is a bool Tensor variable with following elements:
# [[True, False]
# [False, False]]
x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
x = layers.cast(x, 'bool')
out = layers.reduce_any(x) # True
out = layers.reduce_any(x, dim=0) # [True, False]
out = layers.reduce_any(x, dim=-1) # [True, False]
out = layers.reduce_any(x, dim=1,
keep_dim=True) # [[True], [False]]
"""
helper = LayerHelper('reduce_any', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
if dim is not None and not isinstance(dim, list):
dim = [dim]
helper.append_op(
type='reduce_any',
inputs={'X': input},
outputs={'Out': out},
attrs={
'dim': dim if dim != None else [0],
'keep_dim': keep_dim,
'reduce_all': True if dim == None else False
})
return out
def split(input, num_or_sections, dim=-1, name=None):
"""
Split the input tensor into multiple sub-tensors.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors'
:attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
list(Variable): The list of segmented tensor variables.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# input is a variable which shape is [-1, 3, 9, 5]
input = fluid.layers.data(
name="input", shape=[3, 9, 5], dtype="float32")
x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
# x0.shape [-1, 3, 3, 5]
# x1.shape [-1, 3, 3, 5]
# x2.shape [-1, 3, 3, 5]
x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
# x0.shape [-1, 3, 2, 5]
# x1.shape [-1, 3, 3, 5]
# x2.shape [-1, 3, 4, 5]
"""
helper = LayerHelper('split', **locals())
input_shape = input.shape
dim = (len(input_shape) + dim) if dim < 0 else dim
if isinstance(num_or_sections, int):
assert num_or_sections > 1, 'num_or_sections must be more than 1.'
num = num_or_sections
else:
assert len(num_or_sections) <= input_shape[
dim], 'len(num_or_sections) must not be more than input.shape[dim].'
num = len(num_or_sections)
outs = [
helper.create_variable_for_type_inference(dtype=helper.input_dtype())
for i in range(num)
]
helper.append_op(
type='split',
inputs={'X': input},
outputs={'Out': outs},
attrs={
'num': num_or_sections if isinstance(num_or_sections, int) else 0,
'sections': num_or_sections
if isinstance(num_or_sections, list) else [],
'axis': dim
})
return outs
def l2_normalize(x, axis, epsilon=1e-12, name=None):
"""
**L2 normalize Layer**
The l2 normalize layer normalizes `x` along dimension `axis` using an L2
norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes
.. math::
y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
For `x` with more dimensions, this layer independently normalizes each 1-D
slice along dimension `axis`.
Args:
x(Variable|list): The input tensor to l2_normalize layer.
axis(int): The axis on which to apply normalization. If `axis < 0`, \
the dimension to normalization is rank(X) + axis. -1 is the
last dimension.
epsilon(float): The epsilon value is used to avoid division by zero, \
the default value is 1e-12.
name(str|None): A name for this layer(optional). If set None, the layer \
will be named automatically.
Returns:
Variable: The output tensor variable is the same shape with `x`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name="data",
shape=(3, 17, 13),
dtype="float32")
normed = fluid.layers.l2_normalize(x=data, axis=1)
"""
if len(x.shape) == 1:
axis = 0
helper = LayerHelper("l2_normalize", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
norm = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="norm",
inputs={"X": x},
outputs={"Out": out,
"Norm": norm},
attrs={
"axis": 1 if axis is None else axis,
"epsilon": epsilon,
})
return out
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
"""
Applies matrix multiplication to two tensors.
Currently, the input tensors' rank can be any, but when the rank of any
inputs is bigger than 3, this two inputs' rank should be equal.
The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
- If a transpose flag is specified, the last two dimensions of the tensor
are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
:math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
:math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
:math:`[1, D]` in transposed form.
- After transpose, the two tensors are 2-D or n-D and matrix multiplication
performs in the following way.
- If both are 2-D, they are multiplied like conventional matrices.
- If either is n-D, it is treated as a stack of matrices residing in the
last two dimensions and a batched matrix multiply supporting broadcast
applies on the two tensors.
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multiplication.
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): The input variable which is a Tensor or LoDTensor.
transpose_x (bool): Whether to transpose :math:`x` before multiplication.
transpose_y (bool): Whether to transpose :math:`y` before multiplication.
alpha (float): The scale of output. Default 1.0.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The product Tensor (or LoDTensor) variable.
Examples:
.. code-block:: python
# Examples to clarify shapes of the inputs and output
# x: [B, ..., M, K], y: [B, ..., K, N]
# fluid.layers.matmul(x, y) # out: [B, ..., M, N]
# x: [B, M, K], y: [B, K, N]
# fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [B, M, K], y: [K, N]
# fluid.layers.matmul(x, y) # out: [B, M, N]
# x: [M, K], y: [K, N]
# fluid.layers.matmul(x, y) # out: [M, N]
# x: [B, M, K], y: [K]
# fluid.layers.matmul(x, y) # out: [B, M]
# x: [K], y: [K]
# fluid.layers.matmul(x, y) # out: [1]
# x: [M], y: [N]
# fluid.layers.matmul(x, y, True, True) # out: [M, N]
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
out = fluid.layers.matmul(x, y, True, True)
"""
def __check_input(x, y):
x_shape = list(x.shape)
y_shape = list(y.shape)
if len(x_shape) == 1:
x_shape = [1] + x_shape
if len(y_shape) == 1:
y_shape = y_shape + [1]
# check the inner 2 dimensions
if transpose_x:
x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
if transpose_y:
y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
if x_shape[-1] != y_shape[-2]:
raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
(x_shape, y_shape))
if len(y_shape) > 2 and len(x_shape) > 2:
for i, dim_x in enumerate(x_shape[:-2]):
# don't check neg shape
if dim_x < 0 or y_shape[i] < 0:
continue
if dim_x != y_shape[i]:
raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
(x.shape, y.shape))
__check_input(x, y)
helper = LayerHelper('matmul', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='matmul',
inputs={'X': x,
'Y': y},
outputs={'Out': out},
attrs={
'transpose_X': transpose_x,
'transpose_Y': transpose_y,
'alpha': float(alpha),
})
return out
def topk(input, k, name=None):
"""
This operator is used to find values and indices of the k largest entries
for the last dimension.
If the input is a vector (1-D Tensor), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the j-th
largest entry in input, and its index is indices[j].
If the input is a Tensor with higher rank, this operator computes the top k
entries along the last dimension.
For example:
.. code-block:: text
If:
input = [[5, 4, 2, 3],
[9, 7, 10, 25],
[6, 2, 10, 1]]
k = 2
Then:
The first output:
values = [[5, 4],
[10, 25],
[6, 10]]
The second output:
indices = [[0, 1],
[2, 3],
[0, 2]]
Args:
input(Variable): The input variable which can be a vector or Tensor with
higher rank.
k(int | Variable): The number of top elements to look for along the last dimension
of input.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Default: None
Returns:
Tuple[Variable]: A tuple with two elements. Each element is a Variable.
The first one is k largest elements along each last
dimensional slice. The second one is indices of values
within the last dimension of input.
Raises:
ValueError: If k < 1 or k is not less than the last dimension of input
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
input = layers.data(name="input", shape=[13, 11], dtype='float32')
top5_values, top5_indices = layers.topk(input, k=5)
"""
helper = LayerHelper("top_k", **locals())
values = helper.create_variable_for_type_inference(dtype=input.dtype)
indices = helper.create_variable_for_type_inference(dtype="int64")
inputs = {"X": [input]}
attrs = None
if isinstance(k, Variable):
inputs['K'] = k
else:
attrs = {'k': k}
helper.append_op(
type="top_k",
inputs=inputs,
outputs={"Out": [values],
"Indices": [indices]},
attrs=attrs)
values.stop_gradient = True
indices.stop_gradient = True
return values, indices
def edit_distance(input,
label,
normalized=True,
ignored_tokens=None,
input_length=None,
label_length=None):
"""
Edit distance operator computes the edit distances between a batch of
hypothesis strings and their references. Edit distance, also called
Levenshtein distance, measures how dissimilar two strings are by counting
the minimum number of operations to transform one string into anthor.
Here the operations include insertion, deletion, and substitution.
For example, given hypothesis string A = "kitten" and reference
B = "sitting", the edit distance is 3 for A will be transformed into B
at least after two substitutions and one insertion:
"kitten" -> "sitten" -> "sittin" -> "sitting"
The input is a LoDTensor/Tensor consisting of all the hypothesis strings with
the total number denoted by `batch_size`, and the separation is specified
by the LoD information or input_length. And the `batch_size` reference strings are arranged
in order in the same way as `input`.
The output contains the `batch_size` results and each stands for the edit
distance for a pair of strings respectively. If Attr(normalized) is true,
the edit distance will be divided by the length of reference string.
Args:
input(Variable): The indices for hypothesis strings, it should have rank 2 and dtype int64.
label(Variable): The indices for reference strings, it should have rank 2 and dtype int64.
normalized(bool, default True): Indicated whether to normalize the edit distance by
the length of reference string.
ignored_tokens(list<int>, default None): Tokens that should be removed before
calculating edit distance.
input_length(Variable): The length for each sequence in `input` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
label_length(Variable): The length for each sequence in `label` if it's of Tensor type, it should have shape `[batch_size]` and dtype int64.
Returns:
edit_distance_out(Variable): edit distance result in shape [batch_size, 1]. \n
sequence_num(Variable): sequence number in shape [].
Examples:
.. code-block:: python
import paddle.fluid as fluid
# using LoDTensor
x_lod = fluid.layers.data(name='x_lod', shape=[1], dtype='int64', lod_level=1)
y_lod = fluid.layers.data(name='y_lod', shape=[1], dtype='int64', lod_level=1)
distance_lod, seq_num_lod = fluid.layers.edit_distance(input=x_lod, label=y_lod)
# using Tensor
x_seq_len = 5
y_seq_len = 6
x_pad = fluid.layers.data(name='x_pad', shape=[x_seq_len], dtype='int64')
y_pad = fluid.layers.data(name='y_pad', shape=[y_seq_len], dtype='int64')
x_len = fluid.layers.data(name='x_len', shape=[], dtype='int64')
y_len = fluid.layers.data(name='y_len', shape=[], dtype='int64')
distance_pad, seq_num_pad = fluid.layers.edit_distance(input=x_pad, label=y_pad, input_length=x_len, label_length=y_len)
"""
helper = LayerHelper("edit_distance", **locals())
# remove some tokens from input and labels
if ignored_tokens is not None and len(ignored_tokens) > 0:
erased_input = helper.create_variable_for_type_inference(dtype="int64")
erased_label = helper.create_variable_for_type_inference(dtype="int64")
helper.append_op(
type="sequence_erase",
inputs={"X": [input]},
outputs={"Out": [erased_input]},
attrs={"tokens": ignored_tokens})
input = erased_input
helper.append_op(
type="sequence_erase",
inputs={"X": [label]},
outputs={"Out": [erased_label]},
attrs={"tokens": ignored_tokens})
label = erased_label
this_inputs = {"Hyps": [input], "Refs": [label]}
if input_length and label_length:
this_inputs['HypsLength'] = [input_length]
this_inputs['RefsLength'] = [label_length]
# edit distance op
edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
sequence_num = helper.create_variable_for_type_inference(dtype="int64")
helper.append_op(
type="edit_distance",
inputs=this_inputs,
outputs={"Out": [edit_distance_out],
"SequenceNum": [sequence_num]},
attrs={"normalized": normalized})
return edit_distance_out, sequence_num
def ctc_greedy_decoder(input, blank, name=None):
"""
This op is used to decode sequences by greedy policy by below steps:
1. Get the indexes of max value for each row in input. a.k.a.
numpy.argmax(input, axis=0).
2. For each sequence in result of step1, merge repeated tokens between two
blanks and delete all blanks.
A simple example as below:
.. code-block:: text
Given:
input.data = [[0.6, 0.1, 0.3, 0.1],
[0.3, 0.2, 0.4, 0.1],
[0.1, 0.5, 0.1, 0.3],
[0.5, 0.1, 0.3, 0.1],
[0.5, 0.1, 0.3, 0.1],
[0.2, 0.2, 0.2, 0.4],
[0.2, 0.2, 0.1, 0.5],
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]]
Computation:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
[[0], [2], [1], [0]]
step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
[[2], [1]]
Finally:
output.data = [[2],
[1],
[3]]
output.lod = [[2, 1]]
Args:
input(Variable): (LoDTensor<float>), the probabilities of
variable-length sequences, which is a 2-D Tensor with
LoD information. It's shape is [Lp, num_classes + 1],
where Lp is the sum of all input sequences' length and
num_classes is the true number of classes. (not
including the blank label).
blank(int): the blank label index of Connectionist Temporal
Classification (CTC) loss, which is in thehalf-opened
interval [0, num_classes + 1).
name (str): The name of this layer. It is optional.
Returns:
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
'Lp' is the sum if all output sequences' length. If all the sequences \
in result were empty, the result LoDTensor will be [-1] with \
LoD [[]] and dims [1, 1].
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[8], dtype='float32')
cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
"""
helper = LayerHelper("ctc_greedy_decoder", **locals())
_, topk_indices = topk(input, k=1)
# ctc align op
ctc_out = helper.create_variable_for_type_inference(dtype="int64")
helper.append_op(
type="ctc_align",
inputs={"Input": [topk_indices]},
outputs={"Output": [ctc_out]},
attrs={"merge_repeated": True,
"blank": blank})
return ctc_out
def warpctc(input,
label,
blank=0,
norm_by_times=False,
input_length=None,
label_length=None):
"""
An operator integrating the open source Warp-CTC library
(https://github.com/baidu-research/warp-ctc)
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with CTC, since a native softmax activation is
interated to the Warp-CTC library, to to normlize values for each row of the
input tensor.
Args:
input (Variable): The unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information, or a 3-D Tensor without Lod
information. When it is a 2-D LodTensor, it's shape is
[Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label). When it is a 3-D Tensor, it's shape
is [max_logit_length, batch_size, num_classes + 1],
where max_logit_length is the length of the longest
input logit sequence.
label (Variable): The ground truth of variable-length sequence,
which is a 2-D Tensor with LoD information or a 2-D Tensor without
LoD information. When it is a 2-D LoDTensor or 2-D Tensor,
it is of the shape [Lg, 1], where Lg is th sum of all labels' length.
blank (int, default 0): The blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times(bool, default false): Whether to normalize the gradients
by the number of time-step, which is also the sequence's length.
There is no need to normalize the gradients if warpctc layer was
follewed by a mean_op.
input_length(Variable): The length for each input sequence if it is
of Tensor type, it should have shape `[batch_size]` and dtype int64.
label_length(Variable): The length for each label sequence if it is
of Tensor type, it should have shape `[batch_size]` and dtype int64.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
which is a 2-D Tensor of the shape [batch_size, 1].
Examples:
.. code-block:: python
# using LoDTensor
import paddle.fluid as fluid
import numpy as np
label = fluid.layers.data(name='label', shape=[12, 1],
dtype='float32', lod_level=1)
predict = fluid.layers.data(name='predict',
shape=[11, 8],
dtype='float32',lod_level=1)
cost = fluid.layers.warpctc(input=predict, label=label)
# using Tensor
input_length = fluid.layers.data(name='logits_length', shape=[11],
dtype='int64')
label_length = fluid.layers.data(name='labels_length', shape=[12],
dtype='int64')
target = fluid.layers.data(name='target', shape=[12, 1],
dtype='int32')
# length of the longest logit sequence
max_seq_length = 4
# number of logit sequences
batch_size = 4
output = fluid.layers.data(name='output',
shape=[max_seq_length, batch_size, 8],
dtype='float32')
loss = fluid.layers.warpctc(input=output,label=target,
input_length=input_length,
label_length=label_length)
"""
helper = LayerHelper('warpctc', **locals())
this_inputs = {'Logits': [input], 'Label': [label]}
if input_length and label_length:
this_inputs['LogitsLength'] = [input_length]
this_inputs['LabelLength'] = [label_length]
loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type='warpctc',
inputs=this_inputs,
outputs={'WarpCTCGrad': [grad_out],
'Loss': [loss_out]},
attrs={
'blank': blank,
'norm_by_times': norm_by_times,
})
return loss_out
def sequence_reshape(input, new_dim):
"""
**Sequence Reshape Layer**
This layer will rearrange the input sequences. The new dimension is set by
user. Length of each sequence is computed according to original length,
original dimension and new dimension. The following example will help to
illustrate the function of this layer:
.. code-block:: text
x is a LoDTensor:
x.lod = [[0, 2, 6]]
x.data = [[1, 2], [3, 4],
[5, 6], [7, 8],
[9, 10], [11, 12]]
x.dims = [6, 2]
set new_dim = 4
then out is a LoDTensor:
out.lod = [[0, 1, 3]]
out.data = [[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]]
out.dims = [3, 4]
Currently, only 1-level LoDTensor is supported and please make sure
(original length * original dimension) can be divided by new dimension with
no remainder for each sequence.
Args:
input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
new_dim (int): New dimension that the input LoDTensor is reshaped to.
Returns:
Variable: Reshaped LoDTensor according to new dimension.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype())
helper.append_op(
type='sequence_reshape',
inputs={'X': [input]},
outputs={'Out': [out]},
attrs={'new_dim': new_dim})
return out
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
def nce(input,
label,
num_total_classes,
sample_weight=None,
param_attr=None,
bias_attr=None,
num_neg_samples=None,
name=None,
sampler="uniform",
custom_dist=None,
seed=0,
is_sparse=False):
"""
${comment}
Args:
input (Variable): input variable.
label (Variable): label.
num_total_classes (int):${num_total_classes_comment}
sample_weight (Variable|None): A Variable of shape [batch_size, 1]
storing a weight for each sample. The default weight for each
sample is 1.0.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of nce. If it is set to None or one attribute of ParamAttr, nce
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, nce
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
num_neg_samples (int): ${num_neg_samples_comment}
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
custom_dist (float[]): A float[] with size=num_total_classes.
It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled.
default: None.
seed (int): The seed used in sampler. default: 0.
is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
Returns:
Variable: The output nce loss.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
window_size = 5
words = []
for i in xrange(window_size):
words.append(fluid.layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
dict_size = 10000
label_word = int(window_size / 2) + 1
embs = []
for i in xrange(window_size):
if i == label_word:
continue
emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
param_attr='embed', is_sparse=True)
embs.append(emb)
embs = fluid.layers.concat(input=embs, axis=1)
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=dict_size, param_attr='nce.w_0',
bias_attr='nce.b_0')
#or use custom distribution
dist = np.array([0.05,0.5,0.1,0.3,0.05])
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=5, param_attr='nce.w_1',
bias_attr='nce.b_1',
num_neg_samples=3,
sampler="custom_dist",
custom_dist=dist)
"""
helper = LayerHelper('nce', **locals())
assert isinstance(input, Variable)
assert isinstance(label, Variable)
dim = input.shape[1]
num_true_class = label.shape[1]
w = helper.create_parameter(
attr=helper.param_attr,
shape=[num_total_classes, dim],
is_bias=False,
dtype=input.dtype)
inputs = {}
if helper.bias_attr:
b = helper.create_parameter(
attr=helper.bias_attr,
shape=[num_total_classes, 1],
is_bias=True,
dtype=input.dtype)
inputs['Bias'] = b
cost = helper.create_variable_for_type_inference(dtype=input.dtype)
sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
inputs['Input'] = input
inputs['Label'] = label
inputs['Weight'] = w
inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
if sampler == "uniform":
sampler = 0
elif sampler == "log_uniform":
sampler = 1
elif sampler == "custom_dist":
assert custom_dist is not None
# assert isinstance(custom_dist, Variable)
custom_dist_len = num_total_classes
alias_probs_ = [0] * custom_dist_len
alias_ = [0] * custom_dist_len
bigs = []
littles = []
for i in range(custom_dist_len):
normal_prob = custom_dist[i] * custom_dist_len
if normal_prob - 1.0 > 0:
bigs.append((i, normal_prob))
elif 1.0 - normal_prob > 0:
littles.append((i, normal_prob))
else:
alias_probs_[i] = normal_prob
alias_[i] = -1
while len(bigs) and len(littles):
big = bigs.pop(0)
little = littles.pop(0)
big_idx = big[0]
big_prob = big[1]
alias_probs_[little[0]] = little[1]
alias_[little[0]] = big_idx
big_left = big[1] + little[1] - 1
if big_left - 1.0 > 0:
bigs.append((big_idx, big_left))
elif 1.0 - big_left > 0:
littles.append((big_idx, big_left))
else:
alias_probs_[big_idx] = big_left
alias_[big_idx] = -1
if len(bigs):
big = bigs.pop(0)
alias_probs_[big[0]] = 1.0
alias_[big[0]] = -1
if len(littles):
little = littles.pop(0)
alias_probs_[little[0]] = 1.0
alias_[little[0]] = -1
def _init_by_numpy_array(numpy_array):
ret = helper.create_parameter(
attr=ParamAttr(),
shape=numpy_array.shape,
dtype=numpy_array.dtype,
default_initializer=NumpyArrayInitializer(numpy_array))
ret.stop_gradient = True
return ret
inputs['CustomDistProbs'] = _init_by_numpy_array(
np.array(custom_dist).astype('float32'))
inputs['CustomDistAlias'] = _init_by_numpy_array(
np.array(alias_).astype('int32'))
inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
np.array(alias_probs_).astype('float32'))
sampler = 2
else:
raise Exception("Unsupported sampler type.")
if num_neg_samples is None:
num_neg_samples = 10
else:
num_neg_samples = int(num_neg_samples)
remote_prefetch = is_sparse
print(
"With sparse mode, if your models has only small parameter prefetch may cause speed down"
)
attrs = {
'num_total_classes': int(num_total_classes),
'num_neg_samples': num_neg_samples,
'seed': seed,
'sampler': sampler,
'is_sparse': is_sparse,
'remote_prefetch': remote_prefetch
}
helper.append_op(
type='nce',
inputs=inputs,
outputs={
'Cost': cost,
'SampleLogits': sample_logits,
'SampleLabels': sample_labels
},
attrs=attrs)
return cost / (num_neg_samples + 1)
def hsigmoid(input,
label,
num_classes,
param_attr=None,
bias_attr=None,
name=None,
path_table=None,
path_code=None,
is_custom=False,
is_sparse=False):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args:
input (Variable): The input tensor variable with shape
:math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N \\times 1]`.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
"""
helper = LayerHelper('hierarchical_sigmoid', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
pre_out = helper.create_variable_for_type_inference(dtype)
dim = input.shape[1]
if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
raise ValueError(
"num_classes must not be less than 2 with default tree")
if (not is_custom) and (is_sparse):
print("Sparse mode should not be used without custom tree")
is_sparse = False
if (not is_custom) and ((path_table is not None) or
(path_code is not None)):
raise ValueError(
"only num_classes should be passed without custom tree")
if (is_custom) and (path_code is None):
raise ValueError("path_code should not be None with custom tree")
elif (is_custom) and (path_table is None):
raise ValueError("path_table should not be None with custom tree")
elif (is_custom) and (num_classes is None):
raise ValueError("num_classes should not be None with custom tree")
else:
pass
weights = None
remote_prefetch = is_sparse
print(
"With sparse mode, if your models has only small parameter prefetch may cause speed down"
)
if not is_custom:
weights = helper.create_parameter(
attr=helper.param_attr,
shape=[num_classes - 1, dim],
is_bias=False,
dtype=input.dtype)
else:
weights = helper.create_parameter(
attr=helper.param_attr,
shape=[num_classes, dim],
is_bias=False,
dtype=input.dtype)
inputs = {
"X": input,
"W": weights,
"PathTable": path_table,
"PathCode": path_code,
"Label": label
}
if helper.bias_attr:
if not is_custom:
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=[num_classes - 1, 1],
is_bias=True,
dtype=input.dtype)
inputs['Bias'] = bias
else:
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=[num_classes, 1],
is_bias=True,
dtype=input.dtype)
inputs['Bias'] = bias
helper.append_op(
type="hierarchical_sigmoid",
inputs=inputs,
outputs={"Out": out,
"PreOut": pre_out,
"W_Out": weights},
attrs={
"num_classes": num_classes,
"is_sparse": is_sparse,
"remote_prefetch": remote_prefetch
})
return out
def transpose(x, perm, name=None):
"""
Permute the dimensions of `input` according to `perm`.
The `i`-th dimension of the returned tensor will correspond to the
perm[i]-th dimension of `input`.
Args:
x (Variable): The input Tensor.
perm (list): A permutation of the dimensions of `input`.
name (str): The name of this layer. It is optional.
Returns:
Variable: A transposed Tensor.
Examples:
.. code-block:: python
# use append_batch_size=False to avoid prepending extra
# batch size in shape
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[5, 10, 15],
dtype='float32', append_batch_size=False)
x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
"""
if len(perm) != len(x.shape):
raise ValueError(
"Input(perm) is the permutation of dimensions of Input(input). "
"Its length should be equal to Input(input)'s rank.")
for idx, dim in enumerate(perm):
if dim >= len(x.shape):
raise ValueError(
"Each element in perm should be less than x's rank. "
"%d-th element in perm is %d which accesses x's rank %d." %
(idx, perm[idx], len(x.shape)))
helper = LayerHelper('transpose', **locals())
out = helper.create_variable_for_type_inference(x.dtype)
x_shape = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='transpose2',
inputs={'X': [x]},
outputs={'Out': [out],
'XShape': [x_shape]},
attrs={'axis': perm})
return out
def im2sequence(input,
filter_size=1,
stride=1,
padding=0,
input_image_size=None,
out_stride=1,
name=None):
"""
Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
filter_size_W * input.channels} which is similar with im2col.
This op use filter / kernel to scan images and convert these images to
sequences. After expanding, the number of time step are
output_height * output_width for an image, in which output_height and
output_width are calculated by below equation:
.. math::
output\_size = 1 + \
(2 * padding + img\_size - block\_size + stride - 1) / stride
And the dimension of each time step is block_y * block_x * input.channels.
Args:
input (Variable): The input should be a tensor in NCHW format.
filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding(int|tuple): The padding size. If padding is a tuple, it can
contain two integers like (padding_H, padding_W) which means
padding_up = padding_down = padding_H and
padding_left = padding_right = padding_W. Or it can use
(padding_up, padding_left, padding_down, padding_right) to indicate
paddings of four direction. Otherwise, a scalar padding means
padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0.
input_image_size(Variable): the input contains image real size.It's dim
is [batchsize, 2]. It is dispensable.It is just for batch inference.
out_stride(int|tuple): The scaling of image through CNN. It is
dispensable. It is valid only when input_image_size is not null.
If out_stride is tuple, it must contain two intergers,
(out_stride_H, out_stride_W). Otherwise,
the out_stride_H = out_stride_W = out_stride.
name (int): The name of this layer. It is optional.
Returns:
output: The output is a LoDTensor with shape
{input.batch_size * output_height * output_width,
filter_size_H * filter_size_W * input.channels}.
If we regard output as a matrix, each row of this matrix is
a step of a sequence.
Examples:
.. code-block:: text
Given:
x = [[[[ 6. 2. 1.]
[ 8. 3. 5.]
[ 0. 2. 6.]]
[[ 2. 4. 4.]
[ 6. 3. 0.]
[ 6. 4. 7.]]]
[[[ 6. 7. 1.]
[ 5. 7. 9.]
[ 2. 4. 8.]]
[[ 1. 2. 1.]
[ 1. 3. 5.]
[ 9. 0. 8.]]]]
x.dims = {2, 2, 3, 3}
And:
filter = [2, 2]
stride = [1, 1]
padding = [0, 0]
Then:
output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 2. 1. 3. 5. 4. 4. 3. 0.]
[ 8. 3. 0. 2. 6. 3. 6. 4.]
[ 3. 5. 2. 6. 3. 0. 4. 7.]
[ 6. 7. 5. 7. 1. 2. 1. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 8}
output.lod = [[4, 4]]
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32],
dtype='float32')
output = fluid.layers.im2sequence(
input=data, stride=[1, 1], filter_size=[2, 2])
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
if isinstance(filter_size, int):
filter_size = [filter_size, filter_size]
if isinstance(stride, int):
stride = [stride, stride]
if isinstance(padding, int):
padding = [padding, padding]
if len(padding) == 2:
padding.append(padding[0])
padding.append(padding[1])
inputs = {"X": input}
attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
if input_image_size:
if isinstance(out_stride, int):
out_stride = [out_stride, out_stride]
inputs["Y"] = input_image_size
attrs["out_stride"] = out_stride
helper = LayerHelper('im2sequence', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
@templatedoc()
def row_conv(input, future_context_size, param_attr=None, act=None):
"""
${comment}
Args:
input (${x_type}): ${x_comment}.
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
name, initializer etc.
act (str): Non-linear activation to be applied to output variable.
Returns:
${out_comment}.
Examples:
>>> import paddle.fluid as fluid
>>> x = fluid.layers.data(name='x', shape=[16],
>>> dtype='float32', lod_level=1)
>>> out = fluid.layers.row_conv(input=x, future_context_size=2)
"""
helper = LayerHelper('row_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [future_context_size + 1, input.shape[1]]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='row_conv',
inputs={'X': [input],
'Filter': [filter_param]},
outputs={'Out': [out]})
return helper.append_activation(out)
@templatedoc()
def multiplex(inputs, index):
"""
${comment}
For Example:
.. code-block:: text
case 1:
Given:
X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
[[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
[[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
[[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
index = [3,0,1,2]
out:[[3 0 3 4] // X[3,0] (3 = index[i], 0 = i); i=0
[0 1 3 4] // X[0,1] (0 = index[i], 1 = i); i=1
[1 2 4 2] // X[1,2] (0 = index[i], 2 = i); i=2
[2 3 3 4]] // X[2,3] (0 = index[i], 3 = i); i=3
case 2:
Given:
X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
[[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]
index = [1,0]
out:[[1 0 3 4] // X[1,0] (3 = index[0], 0 = i); i=1
[0 1 3 4] // X[0,1] (0 = index[1], 1 = i); i=2
[0 2 4 4] // X[0,2] (0 = 0, 2 = i); i=3
[0 3 3 4]] // X[0,3] (0 = 0, 3 = i); i=4
Examples:
.. code-block:: python
import paddle.fluid as fluid
x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
index = fluid.layers.data(name='index', shape=[1], dtype='int32')
out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
Args:
inputs (list): ${x_comment}.
index (${ids_type}): ${ids_comment}.
Returns:
${out_comment}.
"""
helper = LayerHelper('multiplex', **locals())
if not isinstance(inputs, list) and len(inputs) < 2:
raise ValueError("inputs should be a list object and contains at least "
"2 elements.")
out = helper.create_variable_for_type_inference(inputs[0].dtype)
helper.append_op(
type='multiplex',
inputs={'X': inputs,
'Ids': index},
outputs={'Out': [out]})
return out
def softmax_with_cross_entropy(logits,
label,
soft_label=False,
ignore_index=kIgnoreIndex,
numeric_stable_mode=True,
return_softmax=False,
axis=-1):
"""
**Softmax With Cross Entropy Operator.**
Cross entropy loss with softmax is used as the output layer extensively. This
operator computes the softmax normalized values for dimension :attr:`axis` of
the input tensor, after which cross-entropy loss is computed. This provides
a more numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
When the attribute :attr:`soft_label` is set :attr:`False`, this operators
expects mutually exclusive hard labels, each sample in a batch is in exactly
one class with a probability of 1.0. Each sample in the batch will have a
single label.
The equation is as follows:
1) Hard label (one-hot label, so every sample has exactly one class)
.. math::
loss_j = -\\text{logit}_{label_j} +
\\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes)
.. math::
loss_j = -\\sum_{i=0}^{K}\\text{label}_i
\\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
\\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K
3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated
first by:
.. math::
max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
and then cross entropy loss is calculated by softmax and label.
Args:
logits (Variable): The input tensor of unscaled log probabilities.
label (Variable): The ground truth tensor. If :attr:`soft_label`
is set to :attr:`True`, Label is a Tensor<float/double> in the
same shape with :attr:`logits`. If :attr:`soft_label` is set to
:attr:`True`, Label is a Tensor<int64> in the same shape with
:attr:`logits` expect shape in dimension :attr:`axis` as 1.
soft_label (bool): A flag to indicate whether to interpretate the given
labels as soft labels. Default False.
ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
if :attr:`soft_label` is set to :attr:`False`.
Default: kIgnoreIndex
numeric_stable_mode (bool): A flag to indicate whether to use a more
numerically stable algorithm. Only valid
when :attr:`soft_label` is :attr:`False`
and GPU is used. When :attr:`soft_label`
is :attr:`True` or CPU is used, the
algorithm is always numerically stable.
Note that the speed may be slower when use
stable algorithm. Default: True
return_softmax (bool): A flag indicating whether to return the softmax
along with the cross entropy loss. Default: False
axis (int): The index of dimension to perform softmax calculations. It
should be in range :math:`[-1, rank - 1]`, while :math:`rank`
is the rank of input :attr:`logits`. Default: -1.
Returns:
Variable or Tuple of two Variables: Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple \
(loss, softmax), softmax is in the same shape \
with input logits and cross entropy loss is in \
the same shape with input logits except shape \
in dimension :attr:`axis` as 1.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.softmax_with_cross_entropy(
logits=fc, label=label)
"""
helper = LayerHelper('softmax_with_cross_entropy', **locals())
softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
helper.append_op(
type='softmax_with_cross_entropy',
inputs={'Logits': logits,
'Label': label},
outputs={'Softmax': softmax,
'Loss': loss},
attrs={
'soft_label': soft_label,
'ignore_index': ignore_index,
'numeric_stable_mode': numeric_stable_mode,
'axis': axis
})
if return_softmax:
return loss, softmax
return loss
def sampled_softmax_with_cross_entropy(logits,
label,
num_samples,
num_true=1,
remove_accidental_hits=True,
use_customized_samples=False,
customized_samples=None,
customized_probabilities=None,
seed=0):
"""
**Sampled Softmax With Cross Entropy Operator.**
Cross entropy loss with sampled softmax is used as the output layer for
larger output classes extensively. This operator samples a number of samples
for all examples, and computes the softmax normalized values for each
row of the sampled tensor, after which cross-entropy loss is computed.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
For examples with T true labels (T >= 1), we assume that each true label has
a probability of 1/T. For each sample, S samples are generated using a
log uniform distribution. True labels are concatenated with these samples to
form T + S samples for each example. So, assume the shape of logits is
[N x K], the shape for samples is [N x (T+S)]. For each sampled label, a
probability is calculated, which corresponds to the Q(y|x) in
[Jean et al., 2014](http://arxiv.org/abs/1412.2007).
Logits are sampled according to the sampled labels. Then if
remove_accidental_hits is True, if a sample[i, j] accidentally hits true
labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to
make its softmax result close to zero. Then sampled logits are subtracted by
logQ(y|x), these sampled logits and re-indexed labels are used to compute
a softmax with cross entropy.
Args:
logits (Variable): The unscaled log probabilities, which is a 2-D tensor
with shape [N x K]. N is the batch_size, and K is the class number.
label (Variable): The ground truth which is a 2-D tensor. Label is a
Tensor<int64> with shape [N x T], where T is the number of true
labels per example.
num_samples (int): The number for each example, num_samples should be
less than the number of class.
num_true(int): The number of target classes per training example.
remove_accidental_hits (bool): A flag indicating whether to remove
accidental hits when sampling. If True and if a sample[i, j]
accidentally hits true labels, then the corresponding
sampled_logits[i, j] is minus by 1e20 to make its softmax result
close to zero. Default is True.
use_customized_samples (bool): Whether to use custom samples and probabities to sample
logits.
customized_samples (Variable): User defined samples, which is a 2-D tensor
with shape [N, T + S]. S is the num_samples, and T is the number of true
labels per example.
customized_probabilities (Variable): User defined probabilities of samples,
a 2-D tensor which has the same shape with customized_samples.
seed (int): The random seed for generating random number, which is used
in the process of sampling. Default is 0.
Returns:
Variable: Return the cross entropy loss which is a 2-D tensor with shape
[N x 1].
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name='data', shape=[256], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
fc = fluid.layers.fc(input=input, size=100)
out = fluid.layers.sampled_softmax_with_cross_entropy(
logits=fc, label=label, num_samples=25)
"""
helper = LayerHelper('sample_logits', **locals())
samples = helper.create_variable_for_type_inference(dtype='int64')
probabilities = helper.create_variable_for_type_inference(
dtype=logits.dtype)
sampled_logits \
= helper.create_variable_for_type_inference(dtype=logits.dtype)
sampled_label = helper.create_variable_for_type_inference(dtype='int64')
sampled_softlabel = helper.create_variable_for_type_inference(
dtype=logits.dtype)
logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
helper.append_op(
type='sample_logits',
inputs={
'Logits': logits,
'Labels': label,
'CustomizedSamples': customized_samples,
'CustomizedProbabilities': customized_probabilities
},
outputs={
'Samples': samples,
'Probabilities': probabilities,
'SampledLabels': sampled_label,
'SampledLogits': sampled_logits,
'LogitsDim': logits_dim,
'LabelsDim': labels_dim
},
attrs={
'use_customized_samples': use_customized_samples,
'uniq': True,
'remove_accidental_hits': remove_accidental_hits,
'num_samples': num_samples,
'seed': seed
})
loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
helper.append_op(
type='one_hot',
inputs={'X': sampled_label},
attrs={'depth': num_samples + 1},
outputs={'Out': sampled_softlabel})
helper.append_op(
type='softmax_with_cross_entropy',
inputs={'Logits': sampled_logits,
'Label': sampled_softlabel},
outputs={'Softmax': softmax,
'Loss': loss},
attrs={
'soft_label': True,
'ignore_index': False,
'numeric_stable_mode': False
})
return loss / num_true
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
"""
This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
For each instance, it computes the smooth L1 loss element by element first
and then sums all the losses. So the shape of ouput Variable is
[batch_size, 1].
Args:
x (Variable): A tensor with rank at least 2. The input value of smooth
L1 loss op with shape [batch_size, dim1, ..., dimN].
y (Variable): A tensor with rank at least 2. The target value of smooth
L1 loss op with same shape as :attr:`x`.
inside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with :attr:`x`. If
provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
by this tensor element by element.
outside_weight (Variable|None): A tensor with rank at least 2. This
input is optional and should have same shape with :attr:`x`. If
provided, the out smooth L1 loss will be multiplied by this tensor
element by element.
sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
scalar with default value 1.0.
Returns:
Variable: The output smooth L1 loss with shape [batch_size, 1].
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(
name='label', shape=[100], dtype='float32')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(x=fc, y=label)
"""
helper = LayerHelper('smooth_l1_loss', **locals())
diff = helper.create_variable_for_type_inference(dtype=x.dtype)
loss = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='smooth_l1_loss',
inputs={
'X': x,
'Y': y,
'InsideWeight': inside_weight,
'OutsideWeight': outside_weight
},
outputs={'Diff': diff,
'Out': loss},
attrs={'sigma': sigma if sigma is not None else 1.0})
return loss
def one_hot(input, depth, allow_out_of_range=False):
"""
This layer creates the one-hot representations for input indices.
Args:
input(Variable): Input indices, last dimension must be 1.
depth(scalar): An interger defining the depth of the one-hot dimension.
allow_out_of_range(bool): A bool value indicating whether the input
indices could be out of range [0, depth). When input indices are
out of range, exceptions is raised if allow_out_of_range is False,
or zero-filling representations is created if it is set True
Returns:
Variable: The one-hot representations of input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.layers.one_hot(input=label, depth=10)
"""
helper = LayerHelper("one_hot", **locals())
one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
if in_dygraph_mode():
inputs = {'X': input}
attrs = {'depth': depth}
else:
if not isinstance(depth, Variable):
# user attribute
inputs = {'X': input}
attrs = {'depth': depth}
else:
depth.stop_gradient = True
inputs = {'X': input, 'depth_tensor': depth}
attrs = {}
helper.append_op(
type="one_hot",
inputs=inputs,
attrs=attrs,
outputs={'Out': one_hot_out},
stop_gradient=True)
return one_hot_out
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
"""
Create an auto-increase variable
which will be automatically increased by 1 every mini-batch
Return the run counter of the main program, default is started from 1.
Args:
counter_name(str): The counter name, default is '@STEP_COUNTER@'.
begin(int): The first value of this counter.
step(int): The increment step between each execution.
Returns:
Variable: The global run counter.
Examples:
.. code-block:: python
import paddle.fluid as fluid
global_step = fluid.layers.autoincreased_step_counter(
counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
"""
helper = LayerHelper('global_step_counter')
if counter_name is None:
counter_name = '@STEP_COUNTER@'
counter, is_new_var = helper.create_or_get_global_variable(
name=counter_name, dtype='int64', shape=[1], persistable=True)
if is_new_var:
helper.set_variable_initializer(
counter, initializer=Constant(
value=begin - 1, force_cpu=True))
helper.main_program.global_block()._prepend_op(
type='increment',
inputs={'X': [counter]},
outputs={'Out': [counter]},
attrs={'step': float(step)},
stop_gradient=True)
counter.stop_gradient = True
return counter
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
"""
Gives a new shape to the input Tensor without changing its data.
The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
:attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
if it is provided, while :attr:`shape` still should be set correctly to
gurantee shape inference in compile-time.
Some tricks exist when specifying the target shape.
1. -1 means the value of this dimension is inferred from the total element
number of x and remaining dimensions. Thus one and only one dimension can
be set -1.
2. 0 means the actual dimension value is going to be copied from the
corresponding dimension of x. The indice of 0s in shape can not exceed
Rank(X).
Here are some examples to explain it.
1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
is [6, 8], the reshape operator will transform x into a 2-D tensor with
shape [6, 8] and leaving x's data unchanged.
2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
specified is [2, 3, -1, 2], the reshape operator will transform x into a
4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
case, one dimension of the target shape is set to -1, the value of this
dimension is inferred from the total element number of x and remaining
dimensions.
3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
besides -1, 0 means the actual dimension value is going to be copied from
the corresponding dimension of x.
Args:
x(variable): The input tensor.
shape(list): The new shape. At most one dimension of the new shape can
be -1.
actual_shape(variable): An optional input. If provided, reshape
according to this given shape rather than
:attr:`shape` specifying shape. That is to
say :attr:`actual_shape` has a higher priority
than :attr:`shape`.
act (str): The non-linear activation to be applied to the reshaped tensor
variable.
inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
are the same variable, otherwise, the input and output of
``layers.reshape`` are different variables. Note that if :attr:`x`
is more than one layer's input, ``inplace`` must be :attr:`False`.
name (str): The name of this layer. It is optional.
Returns:
Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
new tensor variable if :attr:`inplace` is :attr:`False`, \
otherwise it is :attr:`x`. If :attr:`act` is not None, return \
the activated tensor variable.
Raises:
TypeError: if actual_shape is neither Variable nor None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[2, 4, 6], dtype='float32')
reshaped = fluid.layers.reshape(
x=data, shape=[-1, 0, 3, 2], inplace=True)
"""
if not (isinstance(shape, list) or isinstance(shape, tuple)):
raise ValueError("Input shape must be a python list or tuple.")
inputs = {"X": x}
if isinstance(actual_shape, Variable):
inputs["Shape"] = actual_shape
elif actual_shape is not None:
raise TypeError("actual_shape should either be Variable or None")
# Validate the shape
unk_dim_idx = -1
contain_var = False
for dim_idx, dim_size in enumerate(shape):
if isinstance(dim_size, Variable):
contain_var = True
continue
if dim_size == -1:
assert unk_dim_idx == -1, (
"Only one dimension in shape can be unknown.")
unk_dim_idx = dim_idx
elif dim_size == 0:
assert dim_idx < len(x.shape), (
"The indice of 0s in shape can not exceed Rank(X).")
else:
assert dim_size > 0, (
"Each dimension size given in shape must not be negtive "
"except one unknown dimension.")
helper = LayerHelper("reshape2", **locals())
if in_dygraph_mode():
inputs = {'X': x}
attrs = {'shape': shape}
else:
if contain_var:
new_shape_tensor = []
for dim in shape:
if isinstance(dim, Variable):
dim.stop_gradient = True
new_shape_tensor.append(dim)
else:
assert (isinstance(dim, int))
temp_out = helper.create_variable_for_type_inference(
'int32')
fill_constant(
[1], 'int32', dim, force_cpu=True, out=temp_out)
new_shape_tensor.append(temp_out)
inputs['ShapeTensor'] = new_shape_tensor
attrs = {}
else:
attrs = {'shape': shape}
out = x if inplace else helper.create_variable_for_type_inference(
dtype=x.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="reshape2",
inputs=inputs,
attrs=attrs,
outputs={"Out": out,
"XShape": x_shape})
return helper.append_activation(out)
def squeeze(input, axes, name=None):
"""
Remove single-dimensional entries from the shape of a tensor. Takes a
parameter axes with a list of axes to squeeze. If axes is not provided, all
the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised.
For example:
.. code-block:: text
Case 1:
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
we get:
Out.shape = (3, 1, 5)
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
axes = []
we get:
Out.shape = (3, 5)
Args:
input (Variable): The input variable to be squeezed.
axes (list): List of integers, indicating the dimensions to be squeezed.
name (str|None): Name for this layer.
Returns:
Variable: Output squeezed variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = layers.data(name='x', shape=[5, 1, 10])
y = layers.squeeze(input=x, axes=[1])
"""
assert not in_dygraph_mode(), (
"squeeze layer is not supported in dygraph mode yet.")
helper = LayerHelper("squeeze", **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type="squeeze2",
inputs={"X": input},
attrs={"axes": axes},
outputs={"Out": out,
"XShape": x_shape})
return out
def unsqueeze(input, axes, name=None):
"""
Insert single-dimensional entries to the shape of a tensor. Takes one
required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
.. code-block:: text
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
Args:
input (Variable): The input variable to be unsqueezed.
axes (list): List of integers, indicating the dimensions to be inserted.
name (str|None): Name for this layer.
Returns:
Variable: Output unsqueezed variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[5, 10])
y = fluid.layers.unsqueeze(input=x, axes=[1])
"""
helper = LayerHelper("unsqueeze", **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype)
x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type="unsqueeze2",
inputs={"X": input},
attrs={"axes": axes},
outputs={"Out": out,
"XShape": x_shape})
return out
def lod_reset(x, y=None, target_lod=None):
"""
Set LoD of :attr:`x` to a new one specified by :attr:`y` or
:attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
considered as target LoD first, otherwise :attr:`y.data` would be
considered as target LoD. If :attr:`y` is not provided, target LoD should
be specified by :attr:`target_lod`. If target LoD is specified by
:attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
.. code-block:: text
* Example 1:
Given a 1-level LoDTensor x:
x.lod = [[ 2, 3, 1 ]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
target_lod: [4, 2]
then we get a 1-level LoDTensor:
out.lod = [[4, 2]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
* Example 2:
Given a 1-level LoDTensor x:
x.lod = [[2, 3, 1]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
y is a Tensor:
y.data = [[2, 4]]
y.dims = [1, 3]
then we get a 1-level LoDTensor:
out.lod = [[2, 4]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
* Example 3:
Given a 1-level LoDTensor x:
x.lod = [[2, 3, 1]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
y is a 2-level LoDTensor:
y.lod = [[2, 2], [2, 2, 1, 1]]
y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
y.dims = [6, 1]
then we get a 2-level LoDTensor:
out.lod = [[2, 2], [2, 2, 1, 1]]
out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
out.dims = [6, 1]
Args:
x (Variable): Input variable which could be a Tensor or LoDTensor.
y (Variable|None): If provided, output's LoD would be derived
from :attr:`y`.
target_lod (list|tuple|None): One level LoD which should be considered
as target LoD when :attr:`y` not provided.
Returns:
Variable: Output variable with LoD specified by this layer.
Raises:
ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10])
y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
out = fluid.layers.lod_reset(x=x, y=y)
"""
helper = LayerHelper("lod_reset", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if y is not None:
helper.append_op(
type="lod_reset", inputs={'X': x,
'Y': y}, outputs={'Out': out})
elif target_lod is not None:
helper.append_op(
type="lod_reset",
inputs={'X': x},
attrs={'target_lod': target_lod},
outputs={'Out': out})
else:
raise ValueError("y and target_lod should not be both none.")
return out
def lod_append(x, level):
"""
Append level to LoD of :attr:`x`.
.. code-block:: text
* Example 1:
given a 1-level LoDTensor x:
x.lod = [[ 2, 3, 1 ]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
level: [1, 1, 1, 1, 1, 1, 1]
then we get a 2-level LoDTensor:
x.lod = [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
x.dims = [6, 1]
Args:
x (Variable): Input variable which could be a tensor or LoDTensor.
level (list|tuple|Variable): The LoD level to be appended into LoD of x.
Returns:
Variable: Output variable with new LoD level.
Raises:
ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
"""
from collections import Iterable
if x is None:
raise ValueError("Input(x) can't be None.")
if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
raise ValueError("Input(level) must be list, tuple or Variable.")
helper = LayerHelper("lod_append", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
inputs = {'X': x}
attrs = {'append': True}
if isinstance(level, Variable):
inputs['Y'] = level
else:
attrs['target_lod'] = level
helper.append_op(
type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
return out
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
"""
Local Response Normalization Layer. This layer performs a type of
"lateral inhibition" by normalizing over local input regions.
The formula is as follows:
.. math::
Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
In the above equation:
* :math:`n`: The number of channels to sum over.
* :math:`k`: The offset (avoid being divided by 0).
* :math:`alpha`: The scaling parameter.
* :math:`beta`: The exponent parameter.
Refer to `ImageNet Classification with Deep Convolutional Neural Networks
<https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
Args:
input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
n (int, default 5): The number of channels to sum over.
k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
alpha (float, default 1e-4): The scaling parameter.
beta (float, default 0.75): The exponent.
name (str, default None): A name for this operation.
Raises:
ValueError: If rank of the input tensor is not 4.
Returns:
A tensor variable storing the transformation result.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(
name="data", shape=[3, 112, 112], dtype="float32")
lrn = fluid.layers.lrn(input=data)
"""
helper = LayerHelper('lrn', **locals())
dtype = helper.input_dtype()
input_shape = input.shape
dims = len(input_shape)
if dims != 4:
raise ValueError(
"dims of input must be 4(not %d), and it's order must be NCHW" %
(dims))
mid_out = helper.create_variable_for_type_inference(
dtype=dtype, stop_gradient=True)
lrn_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="lrn",
inputs={"X": input},
outputs={
"Out": lrn_out,
"MidOut": mid_out,
},
attrs={"n": n,
"k": k,
"alpha": alpha,
"beta": beta})
return lrn_out
def pad(x, paddings, pad_value=0., name=None):
"""
Pads a tensor with a constant value given by :attr:`pad_value`, and the
padded width is specified by :attr:`paddings`.
Specifically, the number of values padded before the contents of :attr:`x`
in dimension :attr:`i` is indicated by :attr:`paddings[2i]`, and the number
of values padded after the contents of :attr:`x` in dimension :attr:`i` is
indicated by :attr:`paddings[2i+1]`.
See below for an example.
.. code-block:: text
Given:
x = [[1, 2], [3, 4]]
paddings = [0, 1, 1, 2]
pad_value = 0
Return:
out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
Args:
x (Variable): The input tensor variable.
paddings (list): A list of integers. Its elements specify the padded
width before and after for each dimension in turn.
The length of :attr:paddings must be
:math:`rank(x) \\times 2`.
pad_value (float): The constant value used to pad.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The padded tensor variable.
Examples:
.. code-block:: python
# x is a rank 2 tensor variable.
import paddle.fluid as fluid
x = fluid.layers.data(name='data', shape=[224], dtype='float32')
out = fluid.layers.pad(
x=x, paddings=[0, 1, 1, 2], pad_value=0.)
"""
helper = LayerHelper('pad', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='pad',
inputs={'X': x},
outputs={'Out': out},
attrs={'paddings': paddings,
'pad_value': float(pad_value)})
return out
def pad_constant_like(x, y, pad_value=0., name=None):
"""
Pad input(Y) with :attr:`pad_value`, the number of values padded to
the edges of each axis is specified by the difference of the shape
of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
unique pad widths for each axis. The input should be a k-D
tensor(k > 0 and k < 7).
See below for an example.
.. code-block:: text
Given:
X = [[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]]],
[[[18, 19, 20],
[21, 22, 23]],
[[24, 25, 26],
[27, 28, 29]],
[[30, 31, 32],
[33, 34, 35]]]]
X.shape = (2, 3, 2, 3)
Y = [[[[35, 36, 37]],
[[38, 39, 40]],
[[41, 42, 43]]]]
Y.shape = (1, 3, 1, 3)
And
pad_value = -1,
Return:
Out = [[[[35, 36, 37],
[-1, -1, -1]],
[[38, 39, 40],
[-1, -1, -1]],
[[41, 42, 43],
[-1, -1, -1]]],
[[[-1, -1, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, -1, -1]]]]
Out.shape = (2, 3, 2, 3)
Args:
x (Variable): The input tensor variable.
y (Variable): The input tensor variable.
pad_value (float): The constant value used to pad.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The padded tensor variable.
Examples:
.. code-block:: python
# x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
# y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
# out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
"""
helper = LayerHelper('pad_constant_like', input=x, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='pad_constant_like',
inputs={'X': x,
'Y': y},
outputs={'Out': out},
attrs={'pad_value': float(pad_value)})
return out
def label_smooth(label,
prior_dist=None,
epsilon=0.1,
dtype="float32",
name=None):
"""
Label smoothing is a mechanism to regularize the classifier layer and is
called label-smoothing regularization (LSR).
Label smoothing is proposed to encourage the model to be less confident,
since optimizing the log-likelihood of the correct label directly may
cause overfitting and reduce the ability of the model to adapt. Label
smoothing replaces the ground-truth label :math:`y` with the weighted sum
of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
i.e.
.. math::
\\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,
where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
uniform distribution is used for :math:`\mu`.
See more details about label smoothing in https://arxiv.org/abs/1512.00567.
Args:
label(Variable): The input variable containing the label data. The
label data should use one-hot representation.
prior_dist(Variable): The prior distribution to be used to smooth
labels. If not provided, an uniform distribution
is used. The shape of :attr:`prior_dist` should
be :math:`(1, class\_num)`.
epsilon(float): The weight used to mix up the original ground-truth
distribution and the fixed distribution.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
float_64, int etc.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable containing the smoothed labels.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
label = layers.data(name="label", shape=[1], dtype="float32")
one_hot_label = layers.one_hot(input=label, depth=10)
smooth_label = layers.label_smooth(
label=one_hot_label, epsilon=0.1, dtype="float32")
"""
if epsilon > 1. or epsilon < 0.:
raise ValueError("The value of epsilon must be between 0 and 1.")
helper = LayerHelper("label_smooth", **locals())
label.stop_gradient = True
smooth_label = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="label_smooth",
inputs={"X": label,
"PriorDist": prior_dist} if prior_dist else {"X": label},
outputs={"Out": smooth_label},
attrs={"epsilon": float(epsilon)})
return smooth_label
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(
name='x', shape=[8, 112, 112], dtype='float32')
rois = fluid.layers.data(
name='roi', shape=[4], lod_level=1, dtype='float32')
pool_out = fluid.layers.roi_pool(
input=x,
rois=rois,
pooled_height=7,
pooled_width=7,
spatial_scale=1.0)
"""
helper = LayerHelper('roi_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_variable_for_type_inference(dtype)
argmaxes = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type="roi_pool",
inputs={"X": input,
"ROIs": rois},
outputs={"Out": pool_out,
"Argmax": argmaxes},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale
})
return pool_out
@templatedoc()
def roi_align(input,
rois,
pooled_height=1,
pooled_width=1,
spatial_scale=1.0,
sampling_ratio=-1,
name=None):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
sampling_ratio(intger): ${sampling_ratio_comment} Default: -1
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(
name='data', shape=[256, 32, 32], dtype='float32')
rois = fluid.layers.data(
name='rois', shape=[4], dtype='float32')
align_out = fluid.layers.roi_align(input=x,
rois=rois,
pooled_height=7,
pooled_width=7,
spatial_scale=0.5,
sampling_ratio=-1)
"""
helper = LayerHelper('roi_align', **locals())
dtype = helper.input_dtype()
align_out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="roi_align",
inputs={"X": input,
"ROIs": rois},
outputs={"Out": align_out},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale,
"sampling_ratio": sampling_ratio
})
return align_out
def dice_loss(input, label, epsilon=0.00001):
"""
Dice loss for comparing the similarity of two batch of data,
usually is used for binary image segmentation i.e. labels are binary.
The dice loss can be defined as below equation:
.. math::
dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
&= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
&= \\frac{(union\_area - intersection\_area)}{total\_area}
Args:
input (Variable): The predictions with rank>=2. The first dimension is batch size,
and the last dimension is class number.
label (Variable): The groud truth with the same rank with input. The first dimension
is batch size, and the last dimension is 1.
epsilon (float): The epsilon will be added to the numerator and denominator.
If both input and label are empty, it makes sure dice is 1.
Default: 0.00001
Returns:
dice_loss (Variable): The dice loss with shape [1].
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
predictions = fluid.layers.softmax(x)
loss = fluid.layers.dice_loss(input=predictions, label=label)
"""
label = one_hot(label, depth=input.shape[-1])
reduce_dim = list(range(1, len(input.shape)))
inse = reduce_sum(input * label, dim=reduce_dim)
dice_denominator = reduce_sum(
input, dim=reduce_dim) + reduce_sum(
label, dim=reduce_dim)
dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
return reduce_mean(dice_score)
def image_resize(input,
out_shape=None,
scale=None,
name=None,
resample='BILINEAR',
actual_shape=None,
align_corners=True,
align_mode=1):
"""
**Resize a Batch of Images**
The input must be a tensor of the shape (num_batches, channels, in_h, in_w)
or (num_batches, channels, in_d, in_h, in_w), and the resizing only applies
on the last two/three dimensions(depth, hight and width).
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
'TRILINEAR' : Trilinear interpolation
'NEAREST' : Nearest neighbor interpolation
Nearest neighbor interpolation is to perform nearest neighbor interpolation
in both the 3rd dimention(in height direction) and the 4th dimention(in width
direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
Trilinear interpolation is an extension of linear interpolation for
interpolating functions of three variables (e.g. D-direction,
H-direction and W-direction in this op) on a rectilinear 3D grid.
The linear interpolation is performed on three directions.
Align_corners and align_mode are optinal parameters,the calculation method
of interpolation can be selected by them.
Example:
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = floor (H_{in} * scale_{factor})
W_out = floor (W_{in} * scale_{factor})
else:
align_corners = True
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Trilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = (D_{in}+0.5) * scale_{factor} - 0.5
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = D_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation.
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation.
Args:
input (Variable): The input tensor of image resize layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w) or a
5-D tensor of the shape
(num_batches, channls, in_d, in_h, in_w).
out_shape(list|tuple|Variable|None): Output shape of image resize
layer, the shape is (out_h, out_w) when
input is a 4-D tensor and is
(out_d, out_h, out_w) when input is a
5-D tensor. Default: None
scale(float|None): The multiplier for the input height or width. At
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
and 'NEAREST' currently. Default: 'BILINEAR'
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
align_corners(bool) : An optional bool, If True, the centers of the 4 corner pixels of the
input and output tensors are aligned, preserving the values at the
corner pixels.
Default: True
align_mode(int) : An optional for bilinear interpolation. can be \'0\'
for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for
src_idx = scale*dst_index .
Returns:
Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w) or a 5-D tensor of the shape
(num_batches, channels, out_d, out_h, out_w).
Raises:
TypeError: out_shape should be a list or tuple or Variable.
TypeError: actual_shape should either be Variable or None.
ValueError: The 'resample' of image_resize can only be 'BILINEAR',
'TRILINEAR' or 'NEAREST' currently.
ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
ValueError: 'TRILINEAR' only support 5-D tensor.
ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2 for input 4-D tensor.
ValueError: out_shape length should be 3 for input 5-D tensor.
ValueError: scale should be greater than zero.
TypeError: align_corners shoule be a bool value
ValueError: align_mode can only be '0' or '1'
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
"""
resample_methods = {
'BILINEAR': 'bilinear',
'TRILINEAR': 'trilinear',
'NEAREST': 'nearest',
}
if resample not in resample_methods:
raise ValueError(
"The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
"or 'NEAREST' currently.")
resample_type = resample_methods[resample]
if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
if resample == 'TRILINEAR' and len(input.shape) != 5:
raise ValueError("'TRILINEAR'only support 5-D tensor.")
if not isinstance(align_corners, bool):
raise TypeError("Attr align_corners should be a bool value")
if align_mode != 0 and align_mode != 1:
raise ValueError("align_mode can only be 0 or 1")
if out_shape is None and scale is None:
raise ValueError("One of out_shape and scale must not be None.")
helper = LayerHelper('{}_interp'.format(resample_type), **locals())
dtype = helper.input_dtype()
def _is_list_or_turple_(data):
return (isinstance(data, list) or isinstance(data, tuple))
inputs = {"X": input}
attrs = {
"out_d": 0,
"out_h": 0,
"out_w": 0,
"interp_method": resample_type,
"align_corners": align_corners,
"align_mode": align_mode
}
if out_shape is not None:
if isinstance(out_shape, Variable):
warnings.warn("out_shape as Variable type is deprecated, \
it is recommended to use actual_shape instead of \
out_shape to specify output shape dynamically.")
inputs['OutSize'] = out_shape
else:
if not (_is_list_or_turple_(out_shape)):
raise TypeError(
"out_shape should be a list or tuple or Variable.")
if len(input.shape) == 4:
if len(out_shape) != 2:
raise ValueError("out_shape length should be 2 for "
"input 4-D tensor.")
out_shape = list(map(int, out_shape))
attrs['out_h'] = out_shape[0]
attrs['out_w'] = out_shape[1]
if len(input.shape) == 5:
if len(out_shape) != 3:
raise ValueError("out_shape length should be 3 for "
"input 5-D tensor.")
out_shape = list(map(int, out_shape))
attrs['out_d'] = out_shape[0]
attrs['out_h'] = out_shape[1]
attrs['out_w'] = out_shape[2]
else:
if scale <= 0:
raise ValueError("scale should be greater than zero.")
attrs['scale'] = float(scale)
if isinstance(actual_shape, Variable):
inputs["OutSize"] = actual_shape
elif actual_shape is not None:
raise TypeError("actual_shape should either be Variable or None.")
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='{}_interp'.format(resample_type),
inputs=inputs,
outputs={"Out": out},
attrs=attrs)
return out
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input,
out_shape=None,
scale=None,
name=None,
actual_shape=None,
align_corners=True,
align_mode=1):
"""
Resize input by performing bilinear interpolation based on given
output shape which specified by actual_shape, out_shape and scale
in priority order.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this op) on a rectilinear 2D grid. The key idea is
to perform linear interpolation first in one direction, and then
again in the other direction.
For details of bilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
Align_corners and align_mode are optinal parameters,the calculation
method of interpolation can be selected by them.
Example:
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Args:
input(${x_type}): input should be a 4-D tensor.
out_shape(list|tuple|Variable|None): Output shape of resize bilinear
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
align_corners(bool): ${align_corners_comment}
align_mode(bool): ${align_mode_comment}
Returns:
A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
"""
return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
align_corners, align_mode)
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
out_shape=None,
scale=None,
name=None,
actual_shape=None,
align_corners=True,
align_mode=1):
"""
Resize input by performing trilinear interpolation based on given
output shape which specified by actual_shape, out_shape and scale
in priority order.
Trilinear interpolation is an extension of linear interpolation for
interpolating functions of three variables (e.g. D-direction,
H-direction and W-direction in this op) on a rectilinear 3D grid.
The linear interpolation is performed on three directions.
For details of trilinear interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Trilinear_interpolation
Align_corners and align_mode are optinal parameters,the calculation
method of interpolation can be selected by them.
Example:
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Bilinear interpolation:
if:
align_corners = False , align_mode = 0
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = (D_{in}+0.5) * scale_{factor} - 0.5
H_out = (H_{in}+0.5) * scale_{factor} - 0.5
W_out = (W_{in}+0.5) * scale_{factor} - 0.5
else:
input : (N,C,D_in,H_in,W_in)
output: (N,C,D_out,H_out,W_out) where:
D_out = D_{in} * scale_{factor}
H_out = H_{in} * scale_{factor}
W_out = W_{in} * scale_{factor}
Args:
input(${x_type}): input should be a 4-D tensor.
out_shape(list|tuple|Variable|None): Output shape of resize bilinear
layer, the shape is (out_d, out_h, out_w).
Default: None
scale(float|None): The multiplier for the input depth, height or width.
At least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
align_corners(bool): ${align_corners_comment}
align_mode(bool): ${align_mode_comment}
Returns:
A 5-D tensor in shape (num_batches, channels, out_d, out_h, out_w)
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3,6,9,11], dtype="float32")
out = fluid.layers.resize_trilinear(input, out_shape=[12, 12, 12])
"""
return image_resize(input, out_shape, scale, name, 'TRILINEAR',
actual_shape, align_corners, align_mode)
@templatedoc(op_type="nearest_interp")
def resize_nearest(input,
out_shape=None,
scale=None,
name=None,
actual_shape=None,
align_corners=True):
"""
Resize input by performing nearest neighbor interpolation in both the
3rd dimension(in height direction) and the 4th dimension(in width
direction) based on given output shape which is specified by actual_shape,
out_shape and scale in priority order.
Example:
.. code-block:: text
For scale:
if align_corners = True && out_size > 1 :
scale_factor = (in_size-1.0)/(out_size-1.0)
else:
scale_factor = float(in_size/out_size)
Nearest neighbor interpolation:
if:
align_corners = False
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = floor(H_{in} * scale_{factor})
W_out = floor(W_{in} * scale_{factor})
else:
align_corners = True
input : (N,C,H_in,W_in)
output: (N,C,H_out,W_out) where:
H_out = round(H_{in} * scale_{factor})
W_out = round(W_{in} * scale_{factor})
For details of nearest neighbor interpolation, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Args:
input(${x_type}): input should be a 4-D tensor.
out_shape(list|tuple|Variable|None): Output shape of resize nearest
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At
least one of :attr:`out_shape` or :attr:`scale` must be set.
And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape
dynamically. If provided, image resize
according to this given shape rather than
:attr:`out_shape` and :attr:`scale` specifying
shape. That is to say actual_shape has the
highest priority. It is recommended to use
actual_shape instead of :attr:`out_shape` if you
want to specify output shape dynamically. When
using actual_shape to specify output shape, one of
:attr:`out_shape` and :attr:`scale` should also be
set, otherwise errors would be occured in graph
constructing stage.
Default: None
align_corners(bool): ${align_corners_comment}
Returns:
A 4-D tensor in shape of (num_batches, channels, out_h, out_w)
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
"""
return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
align_corners)
def image_resize_short(input, out_short_len, resample='BILINEAR'):
"""
Resize a batch of images. The short edge of input images will be
resized to the given 'out_short_len'. The long edge of input images
will be resized proportionately to make images' length-width ratio
constant.
Args:
input (Variable): The input tensor of image resize layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_short_len(int): The length of output images' short edge.
resample (str): resample method, default: BILINEAR.
Returns:
Variable: The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
out = fluid.layers.image_resize_short(input, out_short_len=3)
"""
in_shape = input.shape
if len(in_shape) != 4:
raise ValueError(
"The rank of input must be 4 (num_batches, channels, in_h, in_w).")
hw = in_shape[2:4]
short_idx = hw.index(min(hw))
long_idx = 1 - short_idx
out_shape = list(hw)
out_shape[short_idx] = out_short_len
out_shape[long_idx] = int(
float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
short_idx])) + 0.5)
return image_resize(input=input, out_shape=out_shape, resample=resample)
def gather(input, index, overwrite=True):
"""
**Gather Layer**
Output is obtained by gathering entries of the outer-most dimension
of X indexed by `index` and concatenate them together.
.. math::
Out = X[Index]
.. code-block:: text
Given:
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
Then:
Out = [[3, 4],
[5, 6]]
Args:
input (Variable): The source input with rank>=1.
index (Variable): The index input with rank=1.
overwrite (bool): The mode that updating the grad when has same index.
If True, use the overwrite mode to update the grad of the same index,
if False, use the accumulate mode to update the grad of the same index.
Default value is True.
Returns:
output (Variable): The output is a tensor with the same rank as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
output = fluid.layers.gather(x, index)
"""
helper = LayerHelper('gather', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="gather",
inputs={"X": input,
"Index": index},
outputs={"Out": out},
attrs={'overwrite': overwrite})
return out
def gather_nd(input, index, name=None):
"""
**Gather Nd Layer**
This function is actually a high-dimensional extension of :code:`gather`
and supports for simultaneous indexing by multiple axes. :attr:`index` is a
K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
tensor of :attr:`index` into :attr:`input`, where each element defines
a slice of params:
.. math::
output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]
Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .
.. code-block:: text
Given:
input = [[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]
input.shape = (2, 3, 4)
* Case 1:
index = [[1]]
gather_nd(input, index)
= [input[1, :, :]]
= [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]
* Case 2:
index = [[0,2]]
gather_nd(input, index)
= [input[0, 2, :]]
= [8, 9, 10, 11]
* Case 3:
index = [[1, 2, 3]]
gather_nd(input, index)
= [input[1, 2, 3]]
= [23]
Args:
input (Variable): The source input
index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically
Returns:
output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[3, 4, 5], dtype='float32')
index = fluid.layers.data(name='index', shape=[2, 2], dtype='int32')
output = fluid.layers.gather_nd(x, index)
"""
helper = LayerHelper('gather_nd', **locals())
dtype = helper.input_dtype()
if name is None:
output = helper.create_variable_for_type_inference(dtype)
else:
output = helper.create_variable(
name=name, dtype=dtype, persistable=False)
helper.append_op(
type="gather_nd",
inputs={"X": input,
"Index": index},
outputs={"Out": output})
return output
def scatter(input, index, updates, name=None, overwrite=True):
"""
**Scatter Layer**
Output is obtained by updating the input on selected indices on the first
axis.
.. math::
Out = X
Out[Ids] = Updates
Args:
input (Variable): The source input with rank>=1.
index (Variable): The index input with rank=1. Its dtype should be
int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter op.
name (str|None): The output variable name. Default None.
overwrite (bool): The mode that updating the output when has same index.
If True, use the overwrite mode to update the output of the same index,
if False, use the accumulate mode to update the output of the same index.
Default value is True.You can set overwrite=False to implement scatter_add.
Returns:
output (Variable): The output is a tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
output = fluid.layers.scatter(input, index, updates)
"""
helper = LayerHelper('scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="scatter",
inputs={"X": input,
"Ids": index,
"Updates": updates},
attrs={'overwrite': overwrite},
outputs={"Out": out})
return out
def scatter_nd_add(ref, index, updates, name=None):
"""
**Scatter_nd_add Layer**
Output is obtained by applying sparse addition to a single value
or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R`
and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index`
has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
is a Tensor with rank :math:`K - 1 + R - Q` and its
shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
add the corresponding :attr:`updates` slice to the :attr:`ref` slice
which is obtained by the last one dimension of :attr:`index` .
.. code-block:: text
Given:
* Case 1:
ref = [0, 1, 2, 3, 4, 5]
index = [[1], [2], [3], [1]]
updates = [9, 10, 11, 12]
we get:
output = [0, 22, 12, 14, 4, 5]
* Case 2:
ref = [[65, 17], [-14, -25]]
index = [[], []]
updates = [[[-1, -2], [1, 2]],
[[3, 4], [-3, -4]]]
ref.shape = (2, 2)
index.shape = (2, 0)
updates.shape = (2, 2, 2)
we get:
output = [[67, 19], [-16, -27]]
Args:
ref (Variable): The ref input.
index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd_add op, and it must have the same type
as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]
name (str|None): The output variable name. Default None.
Returns:
output (Variable): The output is a tensor with the same shape and type as ref.
Examples:
.. code-block:: python
import paddle.fluid as fluid
ref = fluid.layers.data(name='ref', shape=[3, 5, 9, 10], dtype='float32', append_batch_size=False)
index = fluid.layers.data(name='index', shape=[3, 2], dtype='int32', append_batch_size=False)
updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
output = fluid.layers.scatter_nd_add(ref, index, updates)
"""
if ref.dtype != updates.dtype:
raise ValueError("ref and updates must have same data type.")
helper = LayerHelper('scatter_nd_add', **locals())
dtype = helper.input_dtype()
if name is None:
output = helper.create_variable_for_type_inference(dtype)
else:
output = helper.create_variable(
name=name, dtype=dtype, persistable=False)
helper.append_op(
type="scatter_nd_add",
inputs={"X": ref,
"Index": index,
"Updates": updates},
outputs={"Out": output})
return output
def scatter_nd(index, updates, shape, name=None):
"""
**Scatter_nd Layer**
Output is obtained by scattering the :attr:`updates` in a new tensor according
to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` .
If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
Because of the numerical approximation issues, the different order of repeated elements
in :attr:`index` may cause different results. The specific calculation method can be
seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.
Args:
index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd op.
It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape(tuple|list): Shape of output tensor.
name (str|None): The output variable name. Default None.
Returns:
output (Variable): The output is a tensor with the same type as :attr:`updates` .
Examples:
.. code-block:: python
import paddle.fluid as fluid
index = fluid.layers.data(name='index', shape=[3, 2], dtype='int64', append_batch_size=False)
updates = fluid.layers.data(name='update', shape=[3, 9, 10], dtype='float32', append_batch_size=False)
shape = [3, 5, 9, 10]
output = fluid.layers.scatter_nd(index, updates, shape)
"""
return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
def sequence_scatter(input, index, updates, name=None):
"""
**Sequence Scatter Layer**
This operator scatters the Updates tensor to the input X. It uses the LoD
information of Ids to select the rows to update, and use the values in Ids as
the columns to update in each row of X.
Here is an example:
Given the following input:
.. code-block:: text
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
input.dims = [3, 6]
index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
index.lod = [[0, 3, 8, 12]]
updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
updates.lod = [[ 0, 3, 8, 12]]
Then we have the output:
.. code-block:: text
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
out.dims = X.dims = [3, 6]
Args:
input (Variable): The source input with rank>=1.
index (Variable): A LoD Tensor. The index input of sequence scatter op
where input will be updated. The index input with rank=1. Its dtype
should be int32 or int64 as it is used as indexes.
updates (Variable): A LoD Tensor. The values to scatter to the input
tensor X, must be a LoDTensor with the same LoD information as index.
name (str|None): The output variable name. Default None.
Returns:
Variable: The output is a tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
index = layers.data( name='index', shape=[1], dtype='int32')
updates = layers.data( name='updates', shape=[1], dtype='float32')
output = fluid.layers.sequence_scatter(input, index, updates)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="sequence_scatter",
inputs={"X": input,
"Ids": index,
"Updates": updates},
outputs={"Out": out})
return out
@templatedoc()
def random_crop(x, shape, seed=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
shape(${shape_type}): ${shape_comment}
seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
get from `random.randint(-65536, 65535)`.
Returns:
${out_comment}
Examples:
>>> import paddle.fluid as fluid
>>> img = fluid.layers.data("img", [3, 256, 256])
>>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
"""
helper = LayerHelper("random_crop", **locals())
dtype = x.dtype
out = helper.create_variable_for_type_inference(dtype)
if seed is None:
seed = np.random.randint(-65536, 65536)
op_attrs = {"shape": shape}
if isinstance(seed, int):
op_attrs["startup_seed"] = seed
seed = helper.create_variable(
name=unique_name.generate("random_crop_seed"),
dtype="int64",
persistable=True)
elif not isinstance(seed, Variable):
raise ValueError("'seed' must be a Variable or an int.")
helper.append_op(
type="random_crop",
inputs={"X": x,
"Seed": seed},
outputs={"Out": out,
"SeedOut": seed},
attrs=op_attrs)
return out
def log(x, name=None):
"""
Calculates the natural log of the given input tensor, element-wise.
.. math::
Out = \\ln(x)
Args:
x (Variable): Input tensor.
name (str|None, default None): A name for this layer If set None,
the layer will be named automatically.
Returns:
Variable: The natural log of the input tensor computed element-wise.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
output = fluid.layers.log(x)
"""
helper = LayerHelper('log', **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
return out
def relu(x, name=None):
"""
Relu takes one input data (Tensor) and produces one output data (Tensor)
where the rectified linear function, y = max(0, x), is applied to
the tensor elementwise.
.. math::
Out = \\max(0, x)
Args:
x (Variable): The input tensor.
name (str|None, default None): A name for this layer If set None,
the layer will be named automatically.
Returns:
Variable: The output tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
output = fluid.layers.relu(x)
"""
helper = LayerHelper('relu', **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
return out
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
"""
${comment}
Args:
x (Variable): The input tensor.
scale(float, None): If the scale is not set,
the default value is 1.0507009873554804934193349852946.
For more information about this value, please refer
to: https://arxiv.org/abs/1706.02515.
alpha(float, None): If the alpha is not set,
the default value is 1.6732632423543772848170429916717.
For more information about this value, please refer
to: https://arxiv.org/abs/1706.02515.
name (str|None, default None): A name for this layer If set None,
the layer will be named automatically.
Returns:
Variable: The output tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name="input", shape=[3, 9, 5], dtype="float32")
output = fluid.layers.selu(input)
"""
helper = LayerHelper('selu', **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype)
attrs = {}
if scale is not None:
attrs["scale"] = scale
if alpha is not None:
attrs["alpha"] = alpha
helper.append_op(
type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
return out
def mean_iou(input, label, num_classes):
"""
Mean Intersection-Over-Union is a common evaluation metric for
semantic image segmentation, which first computes the IOU for each
semantic class and then computes the average over classes.
IOU is defined as follows:
.. math::
IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it.
Args:
input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
label (Variable): A Tensor of ground truth labels with type int32 or int64.
Its shape should be the same as input.
num_classes (int): The possible number of labels.
Returns:
mean_iou (Variable),out_wrong(Variable),out_correct(Variable):
Three variables:
- mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
- out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
- out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
Examples:
.. code-block:: python
import paddle.fluid as fluid
iou_shape = [32, 32]
num_classes = 5
predict = fluid.layers.data(name='predict', shape=iou_shape)
label = fluid.layers.data(name='label', shape=iou_shape)
iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
num_classes)
"""
helper = LayerHelper('mean_iou', **locals())
dtype = helper.input_dtype()
out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
out_wrong = helper.create_variable_for_type_inference(dtype='int32')
out_correct = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type="mean_iou",
inputs={"Predictions": input,
"Labels": label},
outputs={
"OutMeanIou": out_mean_iou,
"OutWrong": out_wrong,
"OutCorrect": out_correct
},
attrs={"num_classes": num_classes})
return out_mean_iou, out_wrong, out_correct
def crop(x, shape=None, offsets=None, name=None):
"""
Crop input into output, as specified by offsets and shape.
.. code-block:: text
* Case 1:
Given
X = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]],
and
shape = [2, 2],
offsets = [0, 1],
output is:
Out = [[1, 2],
[3, 4]].
* Case 2:
Given
X = [[0, 1, 2, 5, 0]
[0, 3, 4, 6, 0]
[0, 0, 0, 0, 0]],
and shape is tensor
shape = [[0, 0, 0]
[0, 0, 0]]
and
offsets = [0, 1],
output is:
Out = [[1, 2, 5],
[3, 4, 6]].
Args:
x (Variable): The input tensor variable.
shape (Variable|list/tuple of integer): The output shape is specified
by `shape`, which can a Variable or a list/tupe of integer.
If a tensor Variable, it's rank must be the same as `x`. This way
is suitable for the case that the output shape may be changed each
iteration. If a list/tupe of integer, it's length must be the same
as the rank of `x`
offsets (Variable|list/tuple of integer|None): Specifies the cropping
offsets at each dimension. It can be a Variable or or a list/tupe
of integers. If a tensor Variable, it's rank must be the same as `x`.
This way is suitable for the case that the offsets may be changed
each iteration. If a list/tupe of integer, it's length must be the
same as the rank of `x`. If None, the offsets are 0 at each
dimension.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The cropped tensor variable.
Raises:
ValueError: If shape is not a list, tuple or Variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
crop = fluid.layers.crop(x, shape=y)
# or
z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
crop = fluid.layers.crop(z, shape=[-1, 2, 3])
"""
helper = LayerHelper('crop', **locals())
if not (isinstance(shape, list) or isinstance(shape, tuple) or \
isinstance(shape, Variable)):
raise ValueError("The shape should be a list, tuple or Variable.")
if offsets is None:
offsets = [0] * len(x.shape)
out = helper.create_variable_for_type_inference(x.dtype)
ipts = {'X': x}
attrs = {}
if isinstance(shape, Variable):
ipts['Y'] = shape
else:
attrs['shape'] = shape
if isinstance(offsets, Variable):
ipts['Offsets'] = offsets
else:
attrs['offsets'] = offsets
helper.append_op(
type='crop',
inputs=ipts,
outputs={'Out': out},
attrs=None if len(attrs) == 0 else attrs)
return out
def affine_grid(theta, out_shape, name=None):
"""
It generates a grid of (x,y) coordinates using the parameters of
the affine transformation that correspond to a set of points where
the input feature map should be sampled to produce the transformed
output feature map.
.. code-block:: text
* Case 1:
Given:
theta = [[[x_11, x_12, x_13]
[x_14, x_15, x_16]]
[[x_21, x_22, x_23]
[x_24, x_25, x_26]]]
out_shape = [2, 3, 5, 5]
Step 1:
Generate normalized coordinates according to out_shape.
The values of the normalized coordinates are in the interval between -1 and 1.
The shape of the normalized coordinates is [2, H, W] as below:
C = [[[-1. -1. -1. -1. -1. ]
[-0.5 -0.5 -0.5 -0.5 -0.5]
[ 0. 0. 0. 0. 0. ]
[ 0.5 0.5 0.5 0.5 0.5]
[ 1. 1. 1. 1. 1. ]]
[[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]
[-1. -0.5 0. 0.5 1. ]]]
C[0] is the coordinates in height axis and C[1] is the coordinates in width axis.
Step2:
Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
C_ = [[-1. -1. 1. ]
[-0.5 -1. 1. ]
[ 0. -1. 1. ]
[ 0.5 -1. 1. ]
[ 1. -1. 1. ]
[-1. -0.5 1. ]
[-0.5 -0.5 1. ]
[ 0. -0.5 1. ]
[ 0.5 -0.5 1. ]
[ 1. -0.5 1. ]
[-1. 0. 1. ]
[-0.5 0. 1. ]
[ 0. 0. 1. ]
[ 0.5 0. 1. ]
[ 1. 0. 1. ]
[-1. 0.5 1. ]
[-0.5 0.5 1. ]
[ 0. 0.5 1. ]
[ 0.5 0.5 1. ]
[ 1. 0.5 1. ]
[-1. 1. 1. ]
[-0.5 1. 1. ]
[ 0. 1. 1. ]
[ 0.5 1. 1. ]
[ 1. 1. 1. ]]
Step3:
Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
Args:
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
``out_shape`` can be a Variable or a list or tuple.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output with shape [N, H, W, 2].
Raises:
ValueError: If the type of arguments is not supported.
Examples:
.. code-block:: python
import paddle.fluid as fluid
theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
data = fluid.layers.affine_grid(theta, out_shape)
# or
data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
"""
helper = LayerHelper('affine_grid')
if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
isinstance(out_shape, Variable)):
raise ValueError("The out_shape should be a list, tuple or Variable.")
if not isinstance(theta, Variable):
raise ValueError("The theta should be a Variable.")
out = helper.create_variable_for_type_inference(theta.dtype)
ipts = {'Theta': theta}
attrs = {}
if isinstance(out_shape, Variable):
ipts['OutputShape'] = out_shape
else:
attrs['output_shape'] = out_shape
helper.append_op(
type='affine_grid',
inputs=ipts,
outputs={'Output': out},
attrs=None if len(attrs) == 0 else attrs)
return out
def rank_loss(label, left, right, name=None):
"""
**Rank loss layer for RankNet**
`RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
is a pairwise ranking model with a training sample consisting of a pair
of documents, A and B. Label P indicates whether A is ranked higher than B
or not:
P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
about the rank of the input pair.
Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
for documents A and B and the value of label P. The following equation
computes rank loss C_{i,j} from the inputs:
.. math::
C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\
o_{i,j} &= o_i - o_j \\\\
\\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}
Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).
Args:
label (Variable): Indicats whether A ranked higher than B or not.
left (Variable): RankNet's output score for doc A.
right (Variable): RankNet's output score for doc B.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
list: The value of rank loss.
Raises:
ValueError: Any of label, left, and right is not a variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
out = fluid.layers.rank_loss(label, left, right)
"""
helper = LayerHelper('rank_loss', **locals())
if not (isinstance(label, Variable)):
raise ValueError("The label should be a Variable")
if not (isinstance(left, Variable)):
raise ValueError("The left should be a Variable")
if not (isinstance(right, Variable)):
raise ValueError("The right should be a Variable")
out = helper.create_variable_for_type_inference("float32")
helper.append_op(
type='rank_loss',
inputs={"Label": label,
"Left": left,
"Right": right},
outputs={'Out': out})
return out
def margin_rank_loss(label, left, right, margin=0.1, name=None):
"""
Margin Ranking Loss Layer for ranking problem,
which compares left score and right score passed in.
The ranking loss can be defined as following equation:
.. math::
rank\_loss = max(0, -label * (left - right) + margin)
Args:
label (Variable): Indicates whether the left is ranked higher than the right or not.
left (Variable): Ranking score for left.
right (Variable): Ranking score for right.
margin (float): Indicates the given margin.
name (str|None): A name for this layer (optional). If set None, the layer
will be named automatically.
Returns:
Variable: The ranking loss.
Raises:
ValueError: Any of label, left, and right is not a Variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
out = fluid.layers.margin_rank_loss(label, left, right)
"""
helper = LayerHelper('margin_rank_loss', **locals())
if not isinstance(label, Variable):
raise ValueError("The label should be a Variable.")
if not isinstance(left, Variable):
raise ValueError("The left should be a Variable.")
if not isinstance(right, Variable):
raise ValueError("The right should be a Variable.")
out = helper.create_variable_for_type_inference(left.dtype)
act = helper.create_variable_for_type_inference(left.dtype)
helper.append_op(
type='margin_rank_loss',
inputs={"Label": label,
"X1": left,
"X2": right},
outputs={'Out': out,
'Activated': act},
attrs={'margin': margin})
return out
def pad2d(input,
paddings=[0, 0, 0, 0],
mode='constant',
pad_value=0.0,
data_format="NCHW",
name=None):
"""
Pad 2-d images accordding to 'paddings' and 'mode'.
If mode is 'reflect', paddings[0] and paddings[1] must be no greater
than height-1. And the width dimension has the same condition.
Example:
.. code-block:: text
Given that X is a channel of image from input:
X = [[1, 2, 3],
[4, 5, 6]]
Case 0:
paddings = [0, 1, 2, 3],
mode = 'constant'
pad_value = 0
Out = [[0, 0, 1, 2, 3, 0, 0, 0]
[0, 0, 4, 5, 6, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]]
Case 1:
paddings = [0, 1, 2, 1],
mode = 'reflect'
Out = [[3, 2, 1, 2, 3, 2]
[6, 5, 4, 5, 6, 5]
[3, 2, 1, 2, 3, 2]]
Case 2:
paddings = [0, 1, 2, 1],
mode = 'edge'
Out = [[1, 1, 1, 2, 3, 3]
[4, 4, 4, 5, 6, 6]
[4, 4, 4, 5, 6, 6]]
Args:
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
Default: padding = [0, 0, 0, 0].
mode (str): Three modes: constant(default), reflect, edge. Default: constant
pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
the input data.
Default: "NCHW"
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The tensor variable padded accordding to paddings and mode.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32],
dtype='float32')
result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
mode='reflect')
"""
helper = LayerHelper('pad2d', **locals())
dtype = helper.input_dtype(input_param_name='input')
out = helper.create_variable_for_type_inference(dtype)
inputs = {'X': input}
attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
if isinstance(paddings, Variable):
inputs['Paddings'] = paddings
attrs['paddings'] = []
else:
attrs['paddings'] = paddings
helper.append_op(
type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
return out
@templatedoc()
def elu(x, alpha=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|1.0): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper = LayerHelper('elu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='elu',
inputs={'X': x},
outputs={'Out': out},
attrs={'alpha': alpha})
return out
@templatedoc()
def relu6(x, threshold=6.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|6.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper = LayerHelper('relu6', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='relu6',
inputs={'X': x},
outputs={'Out': out},
attrs={'threshold': threshold})
return out
@templatedoc()
def pow(x, factor=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
factor(${factor_type}|1.0): ${factor_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper = LayerHelper('pow', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='pow',
inputs={'X': x},
outputs={'Out': out},
attrs={'factor': factor})
return out
@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper = LayerHelper('stanh', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='stanh',
inputs={'X': x},
outputs={'Out': out},
attrs={'scale_a': scale_a,
'scale_b': scale_b})
return out
@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
slope(${slope_type}|0.2): ${slope_comment}
offset(${offset_type}|0.5): ${offset_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper = LayerHelper('hard_sigmoid', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='hard_sigmoid',
inputs={'X': x},
outputs={'Out': out},
attrs={'slope': slope,
'offset': offset})
return out
@templatedoc()
def swish(x, beta=1.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
beta(${beta_type}|1.0): ${beta_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper = LayerHelper('swish', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='swish',
inputs={'X': x},
outputs={'Out': out},
attrs={'slope': beta})
return out
def prelu(x, mode, param_attr=None, name=None):
"""
Equation:
.. math::
y = \max(0, x) + \\alpha * \min(0, x)
There are three modes for the activation:
.. code-block:: text
all: All elements share same alpha.
channel: Elements in same channel share same alpha.
element: All elements do not share alpha. Each element has its own alpha.
Args:
x (Variable): The input tensor.
mode (string): The mode for weight sharing.
param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha), it can be create by ParamAttr.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
mode = 'channel'
output = fluid.layers.prelu(
x,mode,param_attr=ParamAttr(name='alpha'))
"""
helper = LayerHelper('prelu', **locals())
if mode not in ['all', 'channel', 'element']:
raise ValueError('mode should be one of all, channel, element.')
alpha_shape = [1]
if mode == 'channel':
alpha_shape = [1, x.shape[1], 1, 1]
elif mode == 'element':
alpha_shape = x.shape
dtype = helper.input_dtype(input_param_name='x')
alpha = helper.create_parameter(
attr=helper.param_attr,
shape=alpha_shape,
dtype='float32',
is_bias=False,
default_initializer=Constant(1.0))
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="prelu",
inputs={"X": x,
'Alpha': alpha},
attrs={"mode": mode},
outputs={"Out": out})
return out
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
t_min(${t_min_type}|0.0): ${t_min_comment}
t_max(${t_max_type}|24.0): ${t_max_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
"""
helper = LayerHelper('brelu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='brelu',
inputs={'X': x},
outputs={'Out': out},
attrs={'t_min': t_min,
't_max': t_max})
return out
@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|0.02): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.leaky_relu(x, alpha=0.01)
"""
helper = LayerHelper('leaky_relu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='leaky_relu',
inputs={'X': x},
outputs={'Out': out},
attrs={'alpha': alpha})
return out
@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|40.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
y = fluid.layers.soft_relu(x, threshold=20.0)
"""
helper = LayerHelper('soft_relu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='soft_relu',
inputs={'X': x},
outputs={'Out': out},
attrs={'threshold': threshold})
return out
def flatten(x, axis=1, name=None):
"""
**Flatten layer**
Flattens the input tensor into a 2D matrix.
For Example:
.. code-block:: text
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
Args:
x (Variable): A tensor of rank >= axis.
axis (int): Indicate up to which input dimensions (exclusive) should
be flattened to the outer dimension of the output.
The value for axis must be in the range [0, R], where R
is the rank of the input tensor. When axis = 0, the shape
of the output tensor is (1, (d_0 X d_1 ... d_n), where the
shape of the input tensor is (d_0, d_1, ... d_n).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A 2D tensor with the contents of the input tensor, with input \
dimensions up to axis flattened to the outer dimension of \
the output and remaining input dimensions flattened into the \
inner dimension of the output.
Raises:
ValueError: If x is not a variable.
ValueError: If axis is not in range [0, rank(x)].
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
out = fluid.layers.flatten(x=x, axis=2)
"""
helper = LayerHelper('flatten', **locals())
if not (isinstance(x, Variable)):
raise ValueError("The input x should be a Variable")
if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
raise ValueError("The axis should be a int, and in range [0, rank(x)]")
out = helper.create_variable_for_type_inference(x.dtype)
x_shape = helper.create_variable_for_type_inference(x.dtype)
helper.append_op(
type='flatten2',
inputs={"X": x},
outputs={'Out': out,
'XShape': x_shape},
attrs={"axis": axis})
return out
def sequence_enumerate(input, win_size, pad_value=0, name=None):
"""
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
.. code-block:: text
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
Args:
input (Variable): The input variable which is a index sequence.
win_size (int): The window size for enumerating all sub-sequences.
pad_value (int): The padding value, default 0.
Returns:
Variable: The enumerate sequence variable which is a LoDTensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True)
helper.append_op(
type='sequence_enumerate',
inputs={'X': input},
outputs={'Out': out},
attrs={'win_size': win_size,
'pad_value': pad_value})
return out
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
"""
**SequenceMask Layer**
This layer outputs a mask according to the input :code:`x` and
:code:`maxlen` with data type of :code:`dtype`.
Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
:code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
.. math::
y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))
Args:
x (Variable): Input tensor of sequence_mask layer,
whose elements are integers less than :code:`maxlen`.
maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
is None, it would be replace with :math:`max(x)`.
dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The output sequence mask.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
mask = layers.sequence_mask(x=x)
"""
helper = LayerHelper('sequence_mask', **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
inputs = {'X': [x]}
attrs = {'out_dtype': out.dtype}
if maxlen is not None:
if isinstance(maxlen, Variable):
inputs['MaxLenTensor'] = maxlen
else:
attrs['maxlen'] = maxlen
helper.append_op(
type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)
out.stop_gradient = True
return out
def stack(x, axis=0):
"""
**Stack Layer**
This layer stacks all of the input :code:`x` along axis.
Input :code:`x` can be a single variable, a :code:`list` of variables,
or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
:code:`tuple`, the shapes of all these variables must be the same.
Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
the shape of the output variable would be
:math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
If :code:`axis` is None, it would be replaced with 0.
For Example:
.. code-block:: text
Case 1:
Input:
x[0].data = [ [1.0 , 2.0 ] ]
x[0].dims = [1, 2]
x[1].data = [ [3.0 , 4.0 ] ]
x[1].dims = [1, 2]
x[2].data = [ [5.0 , 6.0 ] ]
x[2].dims = [1, 2]
Attrs:
axis = 0
Output:
Out.data =[ [ [1.0, 2.0] ],
[ [3.0, 4.0] ],
[ [5.0, 6.0] ] ]
Out.dims = [3, 1, 2]
Case 2:
Given
x[0].data = [ [1.0 , 2.0 ] ]
x[0].dims = [1, 2]
x[1].data = [ [3.0 , 4.0 ] ]
x[1].dims = [1, 2]
x[2].data = [ [5.0 , 6.0 ] ]
x[2].dims = [1, 2]
Attrs:
axis = 1 or axis = -2
Output:
Out.data =[ [ [1.0, 2.0]
[3.0, 4.0]
[5.0, 6.0] ] ]
Out.dims = [1, 3, 2]
Args:
x (Variable|list(Variable)|tuple(Variable)): Input variables.
axis (int|None): The axis along which all inputs are stacked.
Returns:
Variable: The stacked variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
data = layers.stack([x1,x2])
"""
helper = LayerHelper('stack', **locals())
axis = 0 if axis is None else axis
if not isinstance(x, list) and not isinstance(x, tuple):
x = [x]
out = helper.create_variable_for_type_inference(x[0].dtype)
helper.append_op(
type='stack', inputs={'X': x}, outputs={'Y': out},
attrs={'axis': axis})
return out
@templatedoc(op_type="filter_by_instag")
def filter_by_instag(ins, ins_tag, filter_tag, is_lod):
"""
**Filter By Instag Layer**
This function filter a batch of ins by instag,
There are multiple ins, and every ins belongs to some tags.
We can specify some tags we want. So the ins which belongs to that tags
remains in the output, and others removed.
For example, one batch has 4 ins. Every ins has its tag list.
| Ins | Ins_Tag |
|:-----:|:------:|
| 0 | 0, 1 |
| 1 | 1, 3 |
| 2 | 0, 3 |
| 3 | 2, 6 |
And Lod is [1,1,1,1]
And the filter tags [1]
From the definition above, ins which has tag 1 can pass the filter
So Ins 0 and Ins 1 can pass and be seen in the output,
Ins 2 and 3 cannot pass because they do not has tag 1.
Actually, if is_lod is false, it is normal tensor that equals to
lod_tensor with all 1, similar to the example above.
Args:
ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
And first dimension can have lod info or not.
ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
And split them by lod info
filter_tag (Variable): Input Variable (1D Tensor/List), usually it is
list that holds the tags.
is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Returns:
Variable: filtered ins (LoDTensor) and loss weight (Tensor)
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
out, loss_weight = layers.filter_by_instag(ins, ins_tag, filter_tag, True)
"""
helper = LayerHelper('filter_by_instag', **locals())
out = helper.create_variable_for_type_inference(dtype=ins.dtype)
loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
helper.append_op(
type='filter_by_instag',
inputs={'Ins': ins,
'Ins_tag': ins_tag,
'Filter_tag': filter_tag},
outputs={'Out': out,
'LossWeight': loss_weight,
'IndexMap': mmap},
attrs={'is_lod': is_lod})
return [out, loss_weight]
def unstack(x, axis=0, num=None):
"""
**UnStack Layer**
This layer unstacks input :code:`x` into several tensors along axis.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
raised.
Args:
x (Variable): Input variable.
axis (int): The axis along which the input is unstacked.
num (int|None): The number of output variables.
Returns:
list(Variable): The unstacked variables.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
y = fluid.layers.unstack(x, axis=1)
"""
helper = LayerHelper('unstack', **locals())
if num is None:
if axis is None or x.shape[axis] <= 0:
raise ValueError('unknown unstack number')
else:
num = x.shape[axis]
outs = []
for _ in range(num):
outs.append(helper.create_variable_for_type_inference(x.dtype))
helper.append_op(
type='unstack',
inputs={'X': [x]},
outputs={'Y': outs},
attrs={'axis': axis,
'num': num})
return outs
def expand(x, expand_times, name=None):
"""Expand operator tiles the input by given times number. You should set times
number for each dimension by providing attribute 'expand_times'. The rank of X
should be in [1, 6]. Please note that size of 'expand_times' must be the same
with X's rank. Following is a using case:
.. code-block:: text
Input(X) is a 3-D tensor with shape [2, 3, 1]:
[
[[1], [2], [3]],
[[4], [5], [6]]
]
Attr(expand_times): [1, 2, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
[
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
]
Args:
x (Variable): A tensor with rank in [1, 6].
expand_times (list|tuple): Expand times number for each dimension.
Returns:
Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
"""
helper = LayerHelper('expand', input=x, **locals())
dtype = helper.input_dtype(input_param_name='x')
out = helper.create_variable_for_type_inference(dtype)
# check expand_times have tensor
if in_dygraph_mode():
inputs = {'X': x}
attrs = {'expand_times': expand_times}
else:
def contain_tensor(expand_times):
for ele in expand_times:
if isinstance(ele, Variable):
return True
return False
if contain_tensor(expand_times):
new_expand_times = []
for ele in expand_times:
if isinstance(ele, Variable):
ele.stop_gradient = True
new_expand_times.append(ele)
else:
assert (isinstance(ele, int))
temp_out = helper.create_variable_for_type_inference(
"int32")
fill_constant(
[1], 'int32', ele, force_cpu=True, out=temp_out)
new_expand_times.append(temp_out)
inputs = {'X': x, 'expand_times_tensor': new_expand_times}
attrs = {}
else:
inputs = {'X': x}
attrs = {'expand_times': expand_times}
helper.append_op(
type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
from paddle.fluid.framework import convert_np_dtype_to_dtype_
@templatedoc()
def uniform_random_batch_size_like(input,
shape,
dtype='float32',
input_dim_idx=0,
output_dim_idx=0,
min=-1.0,
max=1.0,
seed=0):
"""
${comment}
Args:
input (Variable): ${input_comment}
shape (tuple|list): ${shape_comment}
input_dim_idx (Int): ${input_dim_idx_comment}
output_dim_idx (Int): ${output_dim_idx_comment}
min (Float): ${min_comment}
max (Float): ${max_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
input = layers.data(name="input", shape=[13, 11], dtype='float32')
out = layers.uniform_random_batch_size_like(input, [-1, 11])
"""
helper = LayerHelper('uniform_random_batch_size_like', **locals())
out = helper.create_variable_for_type_inference(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='uniform_random_batch_size_like',
inputs={'Input': input},
outputs={'Out': out},
attrs={
'shape': shape,
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx,
'min': min,
'max': max,
'seed': seed,
'dtype': c_dtype
})
return out
@templatedoc()
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
"""
${comment}
Args:
shape (tuple|list): ${shape_comment}
mean (Float): ${mean_comment}
std (Float): ${std_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): Output data type.
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
out = layers.gaussian_random(shape=[20, 30])
"""
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_variable_for_type_inference(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='gaussian_random',
outputs={'Out': out},
attrs={
'shape': shape,
'mean': mean,
'std': std,
'seed': seed,
'dtype': c_dtype,
'use_mkldnn': False
})
return out
@templatedoc()
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
"""
${comment}
Args:
x (Variable): ${x_comment}
min (Float): ${min_comment}
max (Float): ${max_comment}
seed (Float): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(
name="X",
shape=[13, 11],
dtype='float32',
append_batch_size=False)
out = fluid.layers.sampling_id(x)
"""
helper = LayerHelper('sampling_id', **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='sampling_id',
inputs={'X': x},
outputs={'Out': out},
attrs={'min': min,
'max': max,
'seed': seed})
return out
@templatedoc()
def gaussian_random_batch_size_like(input,
shape,
input_dim_idx=0,
output_dim_idx=0,
mean=0.0,
std=1.0,
seed=0,
dtype='float32'):
"""
${comment}
Args:
input (Variable): ${input_comment}
shape (tuple|list): ${shape_comment}
input_dim_idx (Int): ${input_dim_idx_comment}
output_dim_idx (Int): ${output_dim_idx_comment}
mean (Float): ${mean_comment}
std (Float): ${std_comment}
seed (Int): ${seed_comment}
dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
out = fluid.layers.gaussian_random_batch_size_like(
input, shape=[-1, 11], mean=1.0, std=2.0)
"""
helper = LayerHelper('gaussian_random_batch_size_like', **locals())
out = helper.create_variable_for_type_inference(dtype)
c_dtype = convert_np_dtype_to_dtype_(dtype)
helper.append_op(
type='gaussian_random_batch_size_like',
inputs={'Input': input},
outputs={'Out': out},
attrs={
'shape': shape,
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx,
'mean': mean,
'std': std,
'seed': seed,
'dtype': c_dtype
})
return out
@templatedoc()
def sum(x):
"""
${comment}
Args:
x (Variable): ${x_comment}
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
out = layers.sum([input0,input1])
"""
helper = LayerHelper('sum', **locals())
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('x'))
helper.append_op(
type='sum',
inputs={'X': x},
outputs={'Out': out},
attrs={'use_mkldnn': False})
return out
@templatedoc()
def slice(input, axes, starts, ends):
"""
Slice Operator.
Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
end dimension for each axis in the list of axes, it uses this information
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
of that dimension. If the value passed to start or end is larger than
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
Following examples will explain how slice works:
.. code-block:: text
Case1:
Given:
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
axes = [0, 1]
starts = [1, 0]
ends = [2, 3]
Then:
result = [ [5, 6, 7], ]
Case2:
Given:
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
axes = [0, 1]
starts = [0, 1]
ends = [-1, 1000]
Then:
result = [ [2, 3, 4], ]
Args:
input (Variable): ${input_comment}.
axes (List): ${axes_comment}
starts (List): ${starts_comment}
ends (List): ${ends_comment}
Returns:
out (Variable): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
starts = [1, 0, 2]
ends = [3, 3, 4]
axes = [0, 1, 2]
input = fluid.layers.data(
name="input", shape=[3, 4, 5, 6], dtype='float32')
out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
"""
helper = LayerHelper('slice', **locals())
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('input'))
helper.append_op(
type='slice',
inputs={'Input': input},
outputs={'Out': out},
attrs={'axes': axes,
'starts': starts,
'ends': ends})
return out
def shape(input):
"""
**Shape Layer**
Get the shape of the input.
Args:
input (Variable): The input variable.
Returns:
Variable: The shape of the input variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name="input", shape=[3, 100, 100], dtype="float32")
out = fluid.layers.shape(input)
"""
helper = LayerHelper('shape', **locals())
out = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type='shape', inputs={'Input': input}, outputs={'Out': out})
return out
def rank(input):
"""
**Rank Layer**
Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Args:
input (Variable): The input variable.
Returns:
Variable: The rank of the input variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[3, 100, 100], dtype="float32")
rank = fluid.layers.rank(input) # 4
"""
ndims = len(input.shape)
out = assign(np.array(ndims, 'int32'))
return out
def size(input):
"""
**Size Layer**
Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].
Args:
input (Variable): The input variable.
Returns:
Variable: The number of elements for the input variable.
Examples:
.. code-block:: python
import paddle.fluid.layers as layers
input = layers.data(
name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
rank = layers.size(input) # 300
"""
helper = LayerHelper('size', **locals())
out = helper.create_variable_for_type_inference(dtype='int64')
helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})
return out
def _elementwise_op(helper):
op_type = helper.layer_type
x = helper.kwargs.get('x', None)
y = helper.kwargs.get('y', None)
if in_dygraph_mode():
x = base.to_variable(x)
y = base.to_variable(y)
assert x is not None, 'x cannot be None in {}'.format(op_type)
assert y is not None, 'y cannot be None in {}'.format(op_type)
axis = helper.kwargs.get('axis', -1)
use_mkldnn = helper.kwargs.get('use_mkldnn', False)
name = helper.kwargs.get('name', None)
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type=op_type,
inputs={'X': x,
'Y': y},
outputs={'Out': out},
attrs={'axis': axis,
'use_mkldnn': use_mkldnn})
return helper.append_activation(out)
@templatedoc()
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale(${scale_type}): ${scale_comment}
bias(${bias_type}): ${bias_comment}
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
act(basestring|None): Activation applied to the output.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
"""
helper = LayerHelper('scale', **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type='scale',
inputs={'X': x},
outputs={'Out': out},
attrs={
'scale': float(scale),
'bias': float(bias),
'bias_after_scale': bias_after_scale
})
return helper.append_activation(out)
def elementwise_add(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_add', **locals()))
def elementwise_div(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_div', **locals()))
def elementwise_sub(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
def elementwise_mul(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
def elementwise_max(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_max', **locals()))
def elementwise_min(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_min', **locals()))
def elementwise_pow(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
def elementwise_mod(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
for func in [
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
elementwise_max,
elementwise_min,
elementwise_pow,
elementwise_mod,
elementwise_floordiv,
]:
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
func.__doc__ = _generate_doc_string_(
op_proto,
additional_args_lines=[
"act (basestring|None): Activation applied to the output.",
"name (basestring|None): Name of the output."
])
func.__doc__ = func.__doc__ + """
Examples:
.. code-block:: python
import paddle.fluid as fluid
# example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
z0 = fluid.layers.%s(x0, y0)
# example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
z1 = fluid.layers.%s(x1, y1)
# example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
z2 = fluid.layers.%s(x2, y2, axis=2)
# example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
z3 = fluid.layers.%s(x3, y3, axis=1)
# example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
z4 = fluid.layers.%s(x4, y4, axis=0)
# example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
z5 = fluid.layers.%s(x5, y5, axis=0)
""" % (func.__name__, func.__name__, func.__name__, func.__name__,
func.__name__, func.__name__)
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
helper = LayerHelper(op_name, **locals())
if binary_op:
assert x.dtype == y.dtype
if out is None:
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
if binary_op:
helper.append_op(
type=op_name, inputs={"X": x,
"Y": y}, outputs={"Out": out})
else:
helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})
return out
@templatedoc()
def logical_and(x, y, out=None, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
left = fluid.layers.data(
name='left', shape=[1], dtype='bool')
right = fluid.layers.data(
name='right', shape=[1], dtype='bool')
result = fluid.layers.logical_and(x=left, y=right)
"""
return _logical_op(
op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_or(x, y, out=None, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
left = fluid.layers.data(
name='left', shape=[1], dtype='bool')
right = fluid.layers.data(
name='right', shape=[1], dtype='bool')
result = fluid.layers.logical_or(x=left, y=right)
"""
return _logical_op(
op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_xor(x, y, out=None, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
left = fluid.layers.data(
name='left', shape=[1], dtype='bool')
right = fluid.layers.data(
name='right', shape=[1], dtype='bool')
result = fluid.layers.logical_xor(x=left, y=right)
"""
return _logical_op(
op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)
@templatedoc()
def logical_not(x, out=None, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
left = fluid.layers.data(
name='left', shape=[1], dtype='bool')
result = fluid.layers.logical_not(x=left)
"""
return _logical_op(
op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
@templatedoc()
def clip(x, min, max, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
min(${min_type}): ${min_comment}
max(${max_type}): ${max_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data', shape=[1], dtype='float32')
reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
"""
helper = LayerHelper("clip", **locals())
if name is None:
name = unique_name.generate_with_ignorable_key(".".join(
[helper.name, 'tmp']))
out = helper.create_variable(
type=x.type, name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="clip",
inputs={"X": x},
attrs={"min": min,
"max": max},
outputs={"Out": out})
return out
@templatedoc()
def clip_by_norm(x, max_norm, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
max_norm(${max_norm_type}): ${max_norm_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data', shape=[1], dtype='float32')
reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
"""
helper = LayerHelper("clip_by_norm", **locals())
if name is None:
name = unique_name.generate_with_ignorable_key(".".join(
[helper.name, 'tmp']))
out = helper.create_variable(
type=x.type, name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="clip_by_norm",
inputs={"X": x},
attrs={"max_norm": max_norm},
outputs={"Out": out})
return out
@templatedoc()
def mean(x, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data', shape=[2, 3], dtype='float32')
mean = fluid.layers.mean(input)
"""
helper = LayerHelper("mean", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})
return out
@templatedoc()
def merge_selected_rows(x, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
b = fluid.default_main_program().global_block()
var = b.create_var(
name="X", dtype="float32", persistable=True,
type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
y = fluid.layers.merge_selected_rows(var)
"""
helper = LayerHelper("merge_selected_rows", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="merge_selected_rows",
inputs={"X": x},
attrs={},
outputs={"Out": out})
return out
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
output = fluid.layers.mul(dataX, dataY,
x_num_col_dims = 1,
y_num_col_dims = 1)
"""
helper = LayerHelper("mul", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="mul",
inputs={"X": x,
"Y": y},
attrs={
"x_num_col_dims": x_num_col_dims,
"y_num_col_dims": y_num_col_dims
},
outputs={"Out": out})
return out
@templatedoc()
def sigmoid_cross_entropy_with_logits(x,
label,
ignore_index=kIgnoreIndex,
name=None,
normalize=False):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
label(${label_type}): ${label_comment}
ignore_index(&{ignore_index}): ${ignore_index_comment}
name(basestring|None): Name of the output.
normalize(bool): If true, divide the output by the number of
targets != ignore_index.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data', shape=[10], dtype='float32')
label = fluid.layers.data(
name='data', shape=[10], dtype='float32')
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
x=input,
label=label,
ignore_index=-1,
normalize=True) # or False
# loss = fluid.layers.reduce_sum(loss) # summation of loss
"""
helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="sigmoid_cross_entropy_with_logits",
inputs={"X": x,
"Label": label},
attrs={"ignore_index": ignore_index,
'normalize': normalize},
outputs={"Out": out})
return out
@templatedoc()
def maxout(x, groups, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
groups(${groups_type}): ${groups_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(
name='data',
shape=[256, 32, 32],
dtype='float32')
out = fluid.layers.maxout(input, groups=2)
"""
helper = LayerHelper("maxout", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="maxout",
inputs={"X": x},
attrs={"groups": groups},
outputs={"Out": out})
return out
def space_to_depth(x, blocksize, name=None):
"""
Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
The attr blocksize indicates the input block size.
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
space_to_depth is used to This operation is useful for resizing the activations between convolutions
(but keeping all data)
- Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
- The depth of the output tensor is block_size * block_size * input channel
- The Y, X coordinates within each block of the input become the high order component of the output channel index
- channel should be divisible by square of blocksize
- height, width should be divsible by blocksize
Args:
x(variable): The input LoDtensor.
blocksize(variable): The blocksize to select the element on each feature map should be > 2
Returns:
Variable: The output LoDtensor.
Raises:
TypeError: blocksize type must be a long.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
data = fluid.layers.data(
name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
space_to_depthed = fluid.layers.space_to_depth(
x=data, blocksize=2)
exe = fluid.Executor(fluid.CPUPlace())
data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
out_main = exe.run(fluid.default_main_program(),
feed={'data': data_np},
fetch_list=[space_to_depthed])
"""
helper = LayerHelper("space_to_depth", **locals())
if not (isinstance(blocksize, int)):
raise ValueError("blocksize must be a python Int")
if name is None:
out = helper.create_variable_for_type_inference(
dtype=x.dtype) #fix create
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="space_to_depth",
inputs={"X": x},
attrs={"blocksize": blocksize},
outputs={"Out": out})
return out
@templatedoc()
def sequence_reverse(x, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${y_type}): ${y_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
x_reversed = fluid.layers.sequence_reverse(x)
"""
assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="sequence_reverse",
inputs={"X": x},
outputs={"Y": out},
attrs=dict())
return out
def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
"""
The :attr:`topks` is a list with incremental values in this function. For each topk,
it will average the topk features as an output feature for each channel of every
input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
and width information for :attr:`input` tensor. If feature size of input sequence is less
than topk, it will padding 0 at the back.
.. code-block:: text
If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
row.lod = [[5, 4]]
col.lod = [[6, 7]]
input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
input.lod = [[60, 56]] # where 60 = channel_num * 5 * 6
input.dims = [116, 1] # where 116 = 60 + 56
If topks is [1, 3, 5], then we get a 1-level LoDTensor:
out.lod = [[5, 4]] # share Lod info with row LodTensor
out.dims = [9, 6] # where 6 = len(topks) * channel_num
Args:
input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
row (Variable): The row shoud be 1-level LodTensor to provide the height information
of the input tensor data.
col (Variable): The col shoud be 1-level LodTensor to provide the width information
of the input tensor data.
topks (list): A list of incremental value to average the topk feature.
channel_num (int): The number of input channel.
Returns:
Variable: output LodTensor specified by this layer.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
out = layers.sequence_topk_avg_pooling(input=x_lod_tensor,
row=row_lod_tensor,
col=col_lod_tensor,
topks=[1, 3, 5],
channel_num=5)
"""
helper = LayerHelper('sequence_topk_avg_pooling', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
pos = helper.create_variable_for_type_inference(
dtype=helper.input_dtype(), stop_gradient=True)
helper.append_op(
type='sequence_topk_avg_pooling',
inputs={'X': input,
'ROW': row,
'COLUMN': col},
outputs={'Out': out,
'pos': pos},
attrs={'topks': topks,
'channel_num': channel_num})
return out
def affine_channel(x,
scale=None,
bias=None,
data_layout='NCHW',
name=None,
act=None):
"""
Applies a separate affine transformation to each channel of the input.
Useful for replacing spatial batch norm with its equivalent fixed
transformation. The input also can be 2D tensor and applies a affine
transformation in second dimension.
Args:
x (Variable): Feature map input can be a 4D tensor with order NCHW
or NHWC. It also can be a 2D tensor and the affine transformation
is applied in the second dimension.
scale (Variable): 1D input of shape (C), the c-th element is the scale
factor of the affine transformation for the c-th channel of
the input.
bias (Variable): 1D input of shape (C), the c-th element is the bias
of the affine transformation for the c-th channel of the input.
data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
tensor, you can ignore data_layout.
name (str, default None): The name of this layer.
act (str, default None): Activation to be applied to the output of this layer.
Returns:
out (Variable): A tensor of the same shape and data layout with x.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32],
dtype='float32')
input_scale = fluid.layers.create_parameter(shape=[3],
dtype="float32")
input_bias = fluid.layers.create_parameter(shape=[3],
dtype="float32")
out = fluid.layers.affine_channel(data,scale=input_scale,
bias=input_bias)
"""
helper = LayerHelper("affine_channel", **locals())
if name is None:
out = helper.create_variable_for_type_inference(dtype=x.dtype)
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="affine_channel",
inputs={"X": x,
'Scale': scale,
'Bias': bias},
attrs={"data_layout": data_layout},
outputs={"Out": out})
return helper.append_activation(out)
def similarity_focus(input, axis, indexes, name=None):
"""
SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th row or j-th column will be skipped. And then the
next largest number will be selected from the remaining numbers. Obviously
there will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.
Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
.. code-block:: text
* Example :
Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
the number of channels and the shape of feature map is (A, B):
x.shape = (2, 3, 2, 2)
x.data = [[[[0.8, 0.1],
[0.4, 0.5]],
[[0.9, 0.7],
[0.9, 0.9]],
[[0.8, 0.9],
[0.1, 0.2]]],
[[[0.2, 0.5],
[0.3, 0.4]],
[[0.9, 0.7],
[0.8, 0.4]],
[[0.0, 0.2],
[0.4, 0.7]]]]
Given axis: 1 (the axis of the channel)
Given indexes: [0]
then we get a 4-D tensor out with the same shape of input x:
out.shape = (2, 3, 2, 2)
out.data = [[[[1.0, 0.0],
[0.0, 1.0]],
[[1.0, 0.0],
[0.0, 1.0]],
[[1.0, 0.0],
[0.0, 1.0]]],
[[[0.0, 1.0],
[1.0, 0.0]],
[[0.0, 1.0],
[1.0, 0.0]],
[[0.0, 1.0],
[1.0, 0.0]]]]
Args:
input(Variable): The input tensor variable(default float). It should
be a 4-D tensor with shape [BatchSize, A, B, C].
axis(int): Indicating the dimension to be selected. It can only be
1, 2 or 3.
indexes(list): Indicating the indexes of the selected dimension.
Returns:
Variable: A tensor variable with the same shape and same type \
as the input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(
name='data', shape=[-1, 3, 2, 2], dtype='float32')
fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
"""
helper = LayerHelper('similarity_focus', **locals())
# check attrs
if isinstance(axis, int) is False:
raise TypeError("axis must be int type.")
if isinstance(indexes, list) is False:
raise TypeError("indexes must be list type.")
if axis != 1 and axis != 2 and axis != 3:
raise ValueError("axis must be 1, 2 or 3.")
if len(indexes) == 0:
raise ValueError("indexes can not be empty.")
if name is None:
out = helper.create_variable_for_type_inference(dtype=input.dtype)
else:
out = helper.create_variable(
name=name, dtype=input.dtype, persistable=False)
helper.append_op(
type='similarity_focus',
inputs={'X': input},
outputs={'Out': out},
attrs={"axis": axis,
"indexes": indexes})
return out
def hash(input, hash_size, num_hash=1, name=None):
"""
Hash the input to an integer whose value is less than the given hash size.
The hash algorithm we used was xxHash - Extremely fast hash algorithm
(https://github.com/Cyan4973/xxHash/tree/v0.6.5)
A simple example as below:
.. code-block:: text
Given:
# shape [2, 2]
input.data =
[[1, 2],
[3, 4]]
hash_size = 10000
num_hash = 4
Then:
Hash op will take all number in input's 2nd dimension as hash algorithm's
input for each time. Each input will be hashed for 4 times, and get an
array whose length is 4. Each value in the array ranges from 0 to 9999.
# shape [2, 4]
output.data = [
[[9662, 9217, 1129, 8487],
[8310, 1327, 1654, 4567]],
]
Args:
input (Variable): The input variable which is a one-hot word. The
dimensions of the input variable must be 2. Both Tensor and LoDTensor are supported.
hash_size (int): The space size for hash algorithm. The output value
will keep in the range:math:`[0, hash_size - 1]`.
num_hash (int): The times of hash, default 1.
name (str, default None): The name of this layer.
Returns:
Variable: The hash result variable, which the same variable type as `input`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# titles has shape [batch, 1]
titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=0)
# hash_r has shape [batch, 2]
hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
# titles has shape [batch, 1] and lod information
titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
# hash_r has shape [batch, 2] and inherits lod information from titles
hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=2, hash_size=1000)
"""
helper = LayerHelper('hash', **locals())
out = helper.create_variable_for_type_inference(
helper.input_dtype(), stop_gradient=True)
helper.append_op(
type='hash',
inputs={'X': input},
outputs={'Out': out},
attrs={'num_hash': num_hash,
'mod_by': hash_size})
return out
@templatedoc()
def grid_sampler(x, grid, name=None):
"""
This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points.
.. code-block:: text
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
Step 2:
Indices input data X with grid (x, y) in each [H, W] area, and bilinear
interpolate point value by 4 nearest points.
wn ------- y_n ------- en
| | |
| d_n |
| | |
x_w --d_w-- grid--d_e-- x_e
| | |
| d_s |
| | |
ws ------- y_s ------- wn
x_w = floor(x) // west side x coord
x_e = x_w + 1 // east side x coord
y_n = floor(y) // north side y coord
y_s = y_s + 1 // south side y coord
d_w = grid_x - x_w // distance to west side
d_e = x_e - grid_x // distance to east side
d_n = grid_y - y_n // distance to north side
d_s = y_s - grid_y // distance to south side
wn = X[:, :, y_n, x_w] // north-west point value
en = X[:, :, y_n, x_e] // north-east point value
ws = X[:, :, y_s, x_w] // south-east point value
es = X[:, :, y_s, x_w] // north-east point value
output = wn * d_e * d_s + en * d_w * d_s
+ ws * d_e * d_n + es * d_w * d_n
Args:
x(Variable): Input data of shape [N, C, H, W].
grid(Variable): Input grid tensor of shape [N, H, W, 2].
name (str, default None): The name of this layer.
Returns:
Variable: Output of shape [N, C, H, W] data samples input X
using bilnear interpolation based on input grid.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
out = fluid.layers.grid_sampler(x=x, grid=grid)
"""
helper = LayerHelper("grid_sampler", **locals())
if not isinstance(x, Variable):
return ValueError("The x should be a Variable")
if not isinstance(grid, Variable):
return ValueError("The grid should be a Variable")
out = helper.create_variable_for_type_inference(x.dtype)
ipts = {'X': x, 'Grid': grid}
helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
return out
def log_loss(input, label, epsilon=1e-4, name=None):
"""
**Negative Log Loss Layer**
This layer accepts input predictions and target label and returns the
negative log loss.
.. math::
Out = -label * \\log{(input + \\epsilon)}
- (1 - label) * \\log{(1 - input + \\epsilon)}
Args:
input (Variable|list): a 2-D tensor with shape [N x 1], where N is the
batch size. This input is a probability computed
by the previous operator.
label (Variable|list): the ground truth which is a 2-D tensor with
shape [N x 1], where N is the batch size.
epsilon (float): epsilon
name (string): the name of log_loss
Returns:
Variable: A 2-D tensor with shape [N x 1], the negative log loss.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
cost = fluid.layers.log_loss(input=prob, label=label)
"""
helper = LayerHelper('log_loss', **locals())
if name is None:
loss = helper.create_variable_for_type_inference(dtype=input.dtype)
else:
loss = helper.create_variable(
name=name, dtype=input.dtype, persistable=False)
helper.append_op(
type='log_loss',
inputs={'Predicted': [input],
'Labels': [label]},
outputs={'Loss': [loss]},
attrs={'epsilon': epsilon})
return loss
def teacher_student_sigmoid_loss(input,
label,
soft_max_up_bound=15.0,
soft_max_lower_bound=-15.0):
"""
**Teacher Student Log Loss Layer**
This layer accepts input predictions and target label and returns the
teacher_student loss.
.. math::
loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
Args:
input (Variable|list): a 2-D tensor with shape [N x 1], where N is the
batch size. This input is a probability computed
by the previous operator.
label (Variable|list): the ground truth which is a 2-D tensor with
shape [N x 1], where N is the batch size.
soft_max_up_bound (float): if input > soft_max_up_bound, will be bound
soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound
Returns:
Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.
Examples:
.. code-block:: python
import paddle.fluid as fluid
batch_size = 64
label = fluid.layers.data(
name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
similarity = fluid.layers.data(
name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
"""
helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
out = helper.create_variable(dtype=input.dtype)
helper.append_op(
type='teacher_student_sigmoid_loss',
inputs={'X': [input],
'Label': [label]},
outputs={'Y': [out]},
attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
"soft_max_up_bound": float(soft_max_up_bound)})
return out
def add_position_encoding(input, alpha, beta, name=None):
"""
**Add Position Encoding Layer**
This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
output Tensor of shape [N x M x P] with positional encoding value.
Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
.. math::
PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})} \\\\
PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})} \\\\
Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
Where:
- :math:`PE(pos, 2i)` : the increment for the number at even position
- :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
Args:
input (Variable): 3-D input tensor with shape [N x M x P]
alpha (float): multiple of Input Tensor
beta (float): multiple of Positional Encoding Tensor
name (string): the name of position encoding layer
Returns:
Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.
Examples:
.. code-block:: python
import paddle.fluid as fluid
tensor = fluid.layers.data(
name='tensor',
shape=[32, 64, 512],
dtype='float32',
append_batch_size=False)
position_tensor = fluid.layers.add_position_encoding(
input=tensor, alpha=1.0, beta=1.0)
"""
helper = LayerHelper('add_position_encoding', **locals())
dtype = helper.input_dtype()
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable(name=name, dtype=dtype, persistable=False)
helper.append_op(
type="add_position_encoding",
inputs={"X": input},
outputs={"Out": out},
attrs={"alpha": alpha,
"beta": beta})
return out
def bilinear_tensor_product(x,
y,
size,
act=None,
name=None,
param_attr=None,
bias_attr=None):
"""
**Add Bilinear Tensor Product Layer**
This layer performs bilinear tensor product on two inputs.
For example:
.. math::
out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
In this formula:
- :math:`x`: the first input contains M elements, shape is [batch_size, M].
- :math:`y`: the second input contains N elements, shape is [batch_size, N].
- :math:`W_{i}`: the i-th learned weight, shape is [M, N]
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
- :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.
Args:
x (Variable): 2-D input tensor with shape [batch_size, M]
y (Variable): 2-D input tensor with shape [batch_size, N]
size (int): The dimension of this layer.
act (str, default None): Activation to be applied to the output of this layer.
name (str, default None): The name of this layer.
param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
parameters/weights of this layer.
bias_attr (ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
Returns:
Variable: A 2-D Tensor of shape [batch_size, size].
Examples:
.. code-block:: python
import paddle.fluid as fluid
layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
"""
helper = LayerHelper('bilinear_tensor_product', **locals())
dtype = helper.input_dtype('x')
param_shape = [size, x.shape[1], y.shape[1]]
w = helper.create_parameter(
attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
if name is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable(name=name, dtype=dtype, persistable=False)
inputs = {"X": x, "Y": y, "Weight": w}
if helper.bias_attr:
bias_size = [1, size]
bias = helper.create_parameter(
attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
inputs["Bias"] = bias
helper.append_op(
type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})
# add activation
return helper.append_activation(out)
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
b = fluid.default_main_program().global_block()
input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
out = fluid.layers.get_tensor_from_selected_rows(input)
"""
helper = LayerHelper('get_tensor_from_selected_rows', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='get_tensor_from_selected_rows',
inputs={'X': x},
outputs={'Out': out},
attrs={})
return out
def shuffle_channel(x, group, name=None):
"""
**Shuffle Channel Operator**
This operator shuffles the channels of input x.
It divide the input channels in each group into :attr:`group` subgroups,
and obtain a new order by selecting element from every subgroup one by one.
Please refer to the paper
https://arxiv.org/pdf/1707.01083.pdf
.. code-block:: text
Given a 4-D tensor input with the shape (N, C, H, W):
input.shape = (1, 4, 2, 2)
input.data =[[[[0.1, 0.2],
[0.2, 0.3]],
[[0.3, 0.4],
[0.4, 0.5]],
[[0.5, 0.6],
[0.6, 0.7]],
[[0.7, 0.8],
[0.8, 0.9]]]]
Given group: 2
then we get a 4-D tensor out whth the same shape of input:
out.shape = (1, 4, 2, 2)
out.data = [[[[0.1, 0.2],
[0.2, 0.3]],
[[0.5, 0.6],
[0.6, 0.7]],
[[0.3, 0.4],
[0.4, 0.5]],
[[0.7, 0.8],
[0.8, 0.9]]]]
Args:
x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
group(int): Indicating the conuts of subgroups, It should divide the number of channels.
Returns:
out(Variable): the channels shuffling result is a tensor variable with the
same shape and same type as the input.
Raises:
ValueError: If group is not an int type variable.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
out = fluid.layers.shuffle_channel(x=input, group=2)
"""
helper = LayerHelper("shuffle_channel", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if not isinstance(group, int):
raise TypeError("group must be int type")
helper.append_op(
type="shuffle_channel",
inputs={"X": x},
outputs={"Out": out},
attrs={"group": group})
return out
@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
"""
**Temporal Shift Operator**
${comment}
Args:
x(Variable): ${x_comment}
seg_num(int): ${seg_num_comment}
shift_ratio(float): ${shift_ratio_comment}
name (str, default None): The name of this layer.
Returns:
out(Variable): The temporal shifting result is a tensor variable with the
same shape and same type as the input.
Raises:
TypeError: seg_num must be int type.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
"""
helper = LayerHelper("temporal_shift", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if not isinstance(seg_num, int):
raise TypeError("seg_num must be int type.")
helper.append_op(
type="temporal_shift",
inputs={"X": x},
outputs={"Out": out},
attrs={"seg_num": seg_num,
"shift_ratio": shift_ratio})
return out
class PyFuncRegistry(object):
_register_funcs = []
def __init__(self, func):
if func is None or not callable(func):
raise TypeError('func must be a Python function')
self._func = func
# find named args using reflection
args = inspect.getargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs
self._named_args = None
else:
self._named_args = args[0]
self._id = core._append_python_callable_object_and_return_id(self)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry._register_funcs.append(self)
@classmethod
def registered_func(cls, idx):
return cls._register_funcs[idx]._func
@classmethod
def registered_func_num(cls):
return len(cls._register_funcs)
@property
def id(self):
return self._id
def __call__(self, *args):
if self._named_args is None:
func_ret = self._func()
else:
kwargs = dict()
idx = 0
for arg in self._named_args:
kwargs[arg] = args[idx]
idx += 1
func_ret = self._func(*args[idx:], **kwargs)
if not isinstance(func_ret, (list, tuple)):
func_ret = (func_ret, )
ret = []
for each_ret in func_ret:
if each_ret is None or isinstance(each_ret, core.LoDTensor):
ret.append(each_ret)
continue
if not isinstance(each_ret, np.ndarray):
each_ret = np.array(each_ret)
tensor = core.LoDTensor()
tensor.set(each_ret, core.CPUPlace())
ret.append(tensor)
return tuple(ret)
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
PyFunc Operator.
User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered
:code:`func` in forward part, and call :code:`backward_func` in
backward part (if :code:`backward_func` is not None).
User should set the right data type and shape of :code:`out` before
calling this function. However, data types and shapes of gradients of
:code:`out` and :code:`x` would be inferred automatically.
Input orders of :code:`backward_func` would be: forward inputs
:code:`x`, forward outputs :code:`out` and backward input gradients of
:code:`out`. If some variables of :code:`out` have no gradient, the input
tensor would be None in Python side. If some variables of :code:`in` have
no gradient, users should return None.
This function can also be used to debug the running network. User can
add a :code:`py_func` operator without output, and print input
:code:`x` inside :code:`func`.
Args:
func (callable): forward Python function.
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand.
backward_func (callable|None): backward Python function.
None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None.
Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
Examples:
>>> import paddle.fluid as fluid
>>> import six
>>>
>>> def create_tmp_var(name, dtype, shape):
>>> return fluid.default_main_program().current_block().create_var(
>>> name=name, dtype=dtype, shape=shape)
>>>
>>> # tanh activation has been provided by Paddle C++ op
>>> # Here, we only use tanh to be an example to show the usage
>>> # of py_func
>>> def tanh(x):
>>> return np.tanh(x)
>>>
>>> # forward input x is skipped
>>> def tanh_grad(y, dy):
>>> return np.array(dy) * (1 - np.square(np.array(y)))
>>>
>>> def debug_func(x):
>>> print(x)
>>>
>>> def simple_net(img, label):
>>> hidden = img
>>> for idx in six.moves.range(4):
>>> hidden = fluid.layers.fc(hidden, size=200)
>>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
>>> dtype=hidden.dtype, shape=hidden.shape)
>>>
>>> # user-defined layers with forward and backward
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad,
>>> skip_vars_in_backward_input=hidden)
>>>
>>> # user-defined debug layers to print variables
>>> fluid.layers.py_func(func=debug_func, x=hidden, out=None)
>>>
>>> prediction = fluid.layers.fc(hidden, size=10, act='softmax')
>>> loss = fluid.layers.cross_entropy(input=prediction, label=label)
>>> return fluid.layers.mean(loss)
"""
helper = LayerHelper('py_func', **locals())
if x is None:
x = []
elif isinstance(x, Variable):
x = [x]
elif not isinstance(x, (list, tuple)):
raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
if out is None:
out_list = []
elif isinstance(out, Variable):
out_list = [out]
elif isinstance(out, (list, tuple)):
out_list = out
else:
raise TypeError(
'Output must be Variable/list(Variable)/tuple(Variable)')
fwd_func_id = PyFuncRegistry(func).id
bwd_func_id = PyFuncRegistry(
backward_func).id if backward_func is not None else -1
for each_out in out_list:
if len(each_out.shape) == 0:
raise ValueError(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars = set()
if backward_func is not None and skip_vars_in_backward_input is not None:
if isinstance(skip_vars_in_backward_input, Variable):
skip_vars_in_backward_input = [skip_vars_in_backward_input]
fwd_in_out = [v.name for v in x]
fwd_in_out.extend([v.name for v in out_list])
fwd_in_out = set(fwd_in_out)
backward_skip_vars = set()
for v in skip_vars_in_backward_input:
if not v.name in fwd_in_out:
raise ValueError(
'Variable {} is not found in forward inputs and outputs'
.format(v.name))
backward_skip_vars.add(v.name)
helper.append_op(
type='py_func',
inputs={'X': x},
outputs={'Out': out_list},
attrs={
'forward_callable_id': fwd_func_id,
'backward_callable_id': bwd_func_id,
'backward_skip_vars': list(backward_skip_vars)
})
return out
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
@templatedoc()
def psroi_pool(input,
rois,
output_channels,
spatial_scale,
pooled_height,
pooled_width,
name=None):
"""
${comment}
Args:
input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
output_channels (integer): ${output_channels_comment}
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
pooled_height (integer): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1
name (str, default None): The name of this layer.
Returns:
Variable: ${out_comment}.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
"""
helper = LayerHelper('psroi_pool', **locals())
# check attrs
if not isinstance(output_channels, int):
raise TypeError("output_channels must be int type")
if not isinstance(spatial_scale, float):
raise TypeError("spatial_scale must be float type")
if not isinstance(pooled_height, int):
raise TypeError("pooled_height must be int type")
if not isinstance(pooled_width, int):
raise TypeError("pooled_width must be int type")
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='psroi_pool',
inputs={'X': input,
'ROIs': rois},
outputs={'Out': out},
attrs={
'output_channels': output_channels,
'spatial_scale': spatial_scale,
'pooled_height': pooled_height,
'pooled_width': pooled_width
})
return out
def huber_loss(input, label, delta):
"""
Huber loss is a loss function used in robust.
Huber loss can evaluate the fitness of input to label.
Different from MSE loss, Huber loss is more robust for outliers.
When the difference between input and label is large than delta
.. math::
huber\_loss = delta * (label - input) - 0.5 * delta * delta
When the difference between input and label is less than delta
.. math::
huber\_loss = 0.5 * (label - input) * (label - input)
Args:
input (Variable): This input is a probability computed by the previous operator.
The first dimension is batch size, and the last dimension is 1.
label (Variable): The groud truth whose first dimension is batch size
and last dimension is 1.
delta (float): The parameter of huber loss, which controls
the range of outliers
Returns:
huber\_loss (Variable): The huber loss with shape [batch_size, 1].
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
predict = fluid.layers.fc(input=x, size=1)
label = fluid.layers.data(
name='label', shape=[1], dtype='float32')
loss = fluid.layers.huber_loss(
input=predict, label=label, delta=1.0)
"""
helper = LayerHelper('huber_loss', **locals())
residual = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='huber_loss',
inputs={'X': input,
'Y': label},
outputs={'Out': out,
'Residual': residual},
attrs={'delta': delta})
return out
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
"""
${comment}
Args:
x (Variable): ${x_comment}
target (Variable): ${target_comment}
reduction (Variable): ${reduction_comment}
name (str, default None): The name of this layer.
Returns:
kldiv\_loss (Variable): The KL divergence loss.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
"""
helper = LayerHelper('kldiv_loss', **locals())
loss = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='kldiv_loss',
inputs={'X': x,
'Target': target},
outputs={'Loss': loss},
attrs={'reduction': reduction})
return loss
@templatedoc()
def tree_conv(nodes_vector,
edge_set,
output_size,
num_filters=1,
max_depth=2,
act='tanh',
param_attr=None,
bias_attr=None,
name=None):
"""
${comment}
Args:
nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
edge_set(${edge_set_type}): ${edge_set_comment}
output_size(int): output feature width
num_filters(int): number of filters, Default 1
max_depth(int): max depth of filters, Default 2
act(str): activation function, Default tanh
param_attr(ParamAttr): the parameter attribute for the filters, Default None
bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle.fluid as fluid
# 10 for max_node_size of dataset, 5 for vector width
nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
# 10 for max_node_size of dataset, 2 for every edge has two nodes
# edges must be directional
edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
# the shape of output will be [10, 6, 1],
# 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
# After reshape, output tensor could be nodes_vector for next tree convolution
out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
# also output tensor could be pooling(the pooling in paper called global pooling)
pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
"""
helper = LayerHelper("tree_conv", **locals())
dtype = helper.input_dtype('nodes_vector')
feature_size = nodes_vector.shape[2]
W_shape = [feature_size, 3, output_size, num_filters]
W = helper.create_parameter(
attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
if name == None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
out = helper.create_variable(name=name, dtype=dtype, persistable=False)
helper.append_op(
type='tree_conv',
inputs={'NodesVector': nodes_vector,
'EdgeSet': edge_set,
'Filter': W},
outputs={'Out': out, },
attrs={'max_depth': max_depth})
if helper.bias_attr:
pre_activation = helper.append_bias_op(out)
else:
pre_activation = out
return helper.append_activation(pre_activation)
from .ops import square
from .control_flow import equal
def npair_loss(anchor, positive, labels, l2_reg=0.002):
'''
**Npair Loss Layer**
Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
Npair loss requires paired data. Npair loss has two parts: the first part is L2
regularizer on the embedding vector; the second part is cross entropy loss which
takes the similarity matrix of anchor and positive as logits.
Args:
anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
labels(Variable): 1-D tensor. shape=[batch_size]
l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
Returns:
npair loss(Variable): return npair loss, shape=[1]
Examples:
.. code-block:: python
import paddle.fluid as fluid
anchor = fluid.layers.data(
name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
positive = fluid.layers.data(
name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
labels = fluid.layers.data(
name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)
npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
'''
Beta = 0.25
batch_size = labels.shape[0]
labels = reshape(labels, shape=[batch_size, 1], inplace=True)
labels = expand(labels, expand_times=[1, batch_size])
labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
labels = labels / reduce_sum(labels, dim=1, keep_dim=True)
l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
+ reduce_mean(reduce_sum(square(positive), 1))
l2loss = l2loss * Beta * l2_reg
similarity_matrix = matmul(
anchor, positive, transpose_x=False, transpose_y=True)
softmax_ce = softmax_with_cross_entropy(
logits=similarity_matrix, label=labels, soft_label=True)
cross_entropy = reduce_sum(labels * softmax_ce, 0)
celoss = reduce_mean(cross_entropy)
return l2loss + celoss
def pixel_shuffle(x, upscale_factor):
"""
**Pixel Shuffle Layer**
This layer rearranges elements in a tensor of shape [N, C, H, W]
to a tensor of shape [N, C/r**2, H*r, W*r].
This is useful for implementing efficient sub-pixel convolution
with a stride of 1/r.
Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
by Shi et. al (2016) for more details.
.. code-block:: text
Given a 4-D tensor with the shape:
x.shape = [1, 9, 4, 4]
Given upscale_factor:
upscale_factor= 3
output shape is:
[1, 1, 12, 12]
Args:
x(Variable): The input tensor variable.
upscale_factor(int): factor to increase spatial resolution
Returns:
Out(Variable): Reshaped tensor according to the new dimension.
Raises:
ValueError: If the square of upscale_factor cannot divide the channels of input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[9,4,4])
output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
"""
helper = LayerHelper("pixel_shuffle", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
if not isinstance(upscale_factor, int):
raise TypeError("upscale factor must be int type")
helper.append_op(
type="pixel_shuffle",
inputs={"X": x},
outputs={"Out": out},
attrs={"upscale_factor": upscale_factor})
return out
def fsp_matrix(x, y):
"""
**FSP matrix op**
This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
Given feature map x with shape [x_channel, h, w] and feature map y with shape
[y_channel, h, w], we can get the fsp matrix of x and y in two steps:
1. reshape x into matrix with shape [x_channel, h * w] and reshape and
transpose y into matrix with shape [h * w, y_channel].
2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].
The output is a batch of fsp matrices.
Args:
x (Variable): A feature map with shape [batch_size, x_channel, height, width].
y (Variable): A feature map with shape [batch_size, y_channel, height, width].
The y_channel can be different with the x_channel of Input(X)
while the other dimensions must be the same with Input(X)'s.
Returns:
fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
The x_channel is the channel of x and the y_channel is the channel of y.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32])
feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
filter_size=3)
feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
filter_size=1)
loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)
"""
helper = LayerHelper('fsp_matrix', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
input_param_name='x'))
helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
return out
def continuous_value_model(input, cvm, use_cvm=True):
"""
**continuous_value_model layers**
continuous value model(cvm). Now, it only considers show and click value in CTR project.
We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
Args:
input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
cvm (Variable): a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
use_cvm (bool): use cvm or not. if use cvm, the output dim is the same as input
if don't use cvm, the output dim is input dim - 2(remove show and click)
(cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
Returns:
Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
embed = fluid.layers.embedding(
input=input,
size=[100, 11],
dtype='float32')
ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
"""
helper = LayerHelper('cvm', **locals())
out = helper.create_variable(dtype=input.dtype)
helper.append_op(
type='cvm',
inputs={'X': [input],
'CVM': [cvm]},
outputs={'Y': [out]},
attrs={"use_cvm": use_cvm})
return out
def where(condition):
"""
Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.
Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
If there is zero true element, then an empty tensor will be generated.
Args:
condition(Variable): A bool tensor with rank at least 1.
Returns:
Variable: The tensor variable storing a 2-D tensor.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
# condition is a tensor [True, False, True]
condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[0], [2]]
# condition is a tensor [[True, False], [False, True]]
condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[0, 0], [1, 1]]
# condition is a tensor [False, False, False]
condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
condition = layers.cast(condition, 'bool')
out = layers.where(condition) # [[]]
"""
helper = LayerHelper("where", **locals())
out = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.INT64)
helper.append_op(
type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
return out
def sign(x):
"""
**sign**
This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Args:
x(Variable|numpy.ndarray): The input tensor.
Returns:
Variable: The output sign tensor with identical shape and dtype to `x`.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# [1, 0, -1]
data = fluid.layers.sign(np.array([3, 0, -2], dtype='int32'))
"""
helper = LayerHelper("sign", **locals())
if not isinstance(x, Variable):
x = assign(x)
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
return out
def unique(x, dtype='int32'):
"""
**unique**
Return a unique tensor for `x` and an index tensor pointing to this unique tensor.
Args:
x(Variable): A 1-D input tensor.
dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.
Returns:
tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
`index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
"""
helper = LayerHelper("unique", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
index = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='unique',
inputs={'X': x},
attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
outputs={'Out': [out],
'Index': [index]})
return out, index
def unique_with_counts(x, dtype='int32'):
"""
**unique**
Return a unique tensor for `x` and an index tensor pointing to this unique tensor.
Args:
x(Variable): A 1-D input tensor.
dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.
Returns:
tuple: (out, index, count). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
`index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor, \
`count` is count of unqiue element in the `x`.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
# count is [1, 3, 1, 1]
"""
if not (dtype == 'int32' or dtype == 'int64'):
raise TypeError(
"Op unique_with_counts, index dtype must be int32 or int64")
if x is None or len(x.shape) != 1:
raise ValueError(
"Op unique_with_counts, x must not be null and size of dim must be 1"
)
helper = LayerHelper("unique_with_counts", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
index = helper.create_variable_for_type_inference(dtype)
count = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='unique_with_counts',
inputs={'X': x},
attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
outputs={'Out': [out],
'Index': [index],
'Count': [count]})
return out, index, count
def deformable_conv(input,
offset,
mask,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
deformable_groups=None,
im2col_step=None,
param_attr=None,
bias_attr=None,
name=None):
"""
**Deformable Convolution Layer**
Compute 2-D deformable convolution on 4-D input.
Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
.. math::
y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
Refer to `Deformable ConvNets v2: More Deformable, Better Results
<https://arxiv.org/abs/1811.11168v2>`_ .
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`
Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input (Variable): The input image with [N, C, H, W] format.
offset (Variable): The input coord offset of deformable convolution layer.
Mask (Variable): The input mask of deformable covolution layer.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the deformable conv layer. According to
grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1.
deformable_groups (int): The number of deformable group partitions.
Default: deformable_groups = 1.
im2col_step (int): Maximum number of images per im2col computation;
The total batch size should be divisable by this value or smaller
than this value; if you face out of memory problem, you can try
to use a smaller value here.
Default: im2col_step = 64.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of deformable conv. If it is set to None or one attribute of ParamAttr,
deformable conv will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the parameter is
initialized with :math:`Normal(0.0, std)`, and the
:math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
deformable conv layer. If it is set to False, no bias will be added
to the output units. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None
Returns:
Variable: The tensor variable storing the deformable convolution \
result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
num_filters=2, filter_size=3, padding=1)
"""
num_channels = input.shape[1]
assert param_attr is not False, "param_attr should not be False here."
helper = LayerHelper('deformable_conv', **locals())
dtype = helper.input_dtype()
if not isinstance(input, Variable):
raise TypeError("Input of deformable_conv must be Variable")
if not isinstance(offset, Variable):
raise TypeError("Input Offset of deformable_conv must be Variable")
if not isinstance(mask, Variable):
raise TypeError("Input Mask of deformable_conv must be Variable")
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
stride = utils.convert_to_list(stride, 2, 'stride')
padding = utils.convert_to_list(padding, 2, 'padding')
dilation = utils.convert_to_list(dilation, 2, 'dilation')
input_shape = input.shape
filter_shape = [num_filters, int(num_filter_channels)] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[1] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
filter_param = helper.create_parameter(
attr=helper.param_attr,
shape=filter_shape,
dtype=dtype,
default_initializer=_get_default_param_initializer())
pre_bias = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='deformable_conv',
inputs={
'Input': input,
'Filter': filter_param,
'Offset': offset,
'Mask': mask,
},
outputs={"Output": pre_bias},
attrs={
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'deformable_groups': deformable_groups,
'im2col_step': im2col_step,
})
output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
return output
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
"""
This function returns a col buffer of sliding local blocks of input x, also known
as im2col for batched 2D image tensors. For each block under the convolution filter,
all element will be rearranged as a column. While the convolution filter silding over
the input feature map, a series of such columns will be formed.
For each input :math:`X` with shape [N, C, H, W], the output shape [N, Cout, Lout]
can be calculated as following.
.. math::
dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1
dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1
hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]
Lout &= hout \\times wout
Args:
x(Varaible): The input tensor of format [N, C, H, W].
kernel_sizes(int|list): The size of convolution kernel, should be [k_h, k_w]
or an integer k treated as [k, k].
strides(int|list): The strides, should be [stride_h, stride_w]
or an integer stride treated as [sride, stride].
For default, strides will be [1, 1].
paddings(int|list): The paddings of each dimension, should be
[padding_top, padding_left, padding_bottom, padding_right]
or [padding_h, padding_w] or an integer padding.
If [padding_h, padding_w] was given, it will expanded to
[padding_h, padding_w, padding_h, padding_w]. If an integer
padding was given, [padding, padding, padding, padding] will
be used. For default, paddings will be [0, 0, 0, 0]
dilations(int|list): the dilations of convolution kernel, shold be
[dilation_h, dilation_w], or an integer dialtion treated as
[dilation, dilation]. For default, it will be [1, 1].
Returns:
Variable: The tensor variable corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decribled above. Cout is the total number of values within each block, and Lout is the total number of such blocks.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name = 'data', shape = [3, 224, 224], dtype = 'float32')
y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
"""
helper = LayerHelper("unfold", **locals())
assert len(x.shape) == 4, \
"input should be the format of [N, C, H, W]"
if isinstance(kernel_sizes, int):
kernel_sizes = [kernel_sizes, kernel_sizes]
else:
assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
"kernel_sizes should either be an integer or a list of two integers"
if isinstance(strides, int):
strides = [strides, strides]
else:
assert isinstance(strides, list) and (len(strides) == 2), \
"strides should either be an integer or a list of two integers"
if isinstance(dilations, int):
dilations = [dilations, dilations]
else:
assert isinstance(dilations, list) and (len(dilations) == 2), \
"dilations should either be an integer or a list of two integers"
if isinstance(paddings, int):
paddings = [paddings] * 4
elif isinstance(paddings, list):
if len(paddings) == 2:
paddings = paddings * 2
elif len(paddings) == 4:
pass
else:
raise ValueError(
"paddings should either be an integer or a list of 2 or 4 integers"
)
else:
raise ValueError(
"Unexpected type of paddings, it should be either an integer or a list"
"of 2 or 4 integers")
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="unfold",
inputs={"X": x},
outputs={"Y": out},
attrs={
"kernel_sizes": kernel_sizes,
"strides": strides,
"paddings": paddings,
"dilations": dilations
})
return out
def deformable_roi_pooling(input,
rois,
trans,
no_trans=False,
spatial_scale=1.0,
group_size=[1, 1],
pooled_height=1,
pooled_width=1,
part_size=None,
sample_per_part=1,
trans_std=0.1,
position_sensitive=False,
name=None):
"""
Deformable PSROI Pooling Layer
Args:
input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is
[N,C,H,W]. Where N is batch size,C is number of input channels,H
is height of the feature, and W is the width of the feature.
rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
the top left coordinates, and (x2, y2) is the bottom
right coordinates.
trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where
N is number of ROIs, C is number of channels, which indicate the offset distance
in the x and y directions, H is pooled height, and W is pooled width.
no_trans (bool): Whether to add offset to get new value or not while roi pooling, which
value is True or False. Default: False.
spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels
is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
pooled_height (integer): The pooled output height. Default: 1.
pooled_width (integer): The pooled output width. Default: 1.
part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default:
if None, default value is [pooled_height, pooled_width].
sample_per_part (integer): The number of samples in each bin. Default: 1.
trans_std (float): Coefficient of offset. Default: 0.1.
position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
name (str): Name of layer. Default: None.
Returns:
Variable: The tensor variable storing the deformable psroi pooling \
result.
Examples:
.. code-block:: python
import paddle.fluid as fluid
input = fluid.layers.data(name="input",
shape=[2, 192, 64, 64],
dtype='float32',
append_batch_size=False)
rois = fluid.layers.data(name="rois",
shape=[4],
dtype='float32',
lod_level=1)
trans = fluid.layers.data(name="trans",
shape=[2, 384, 64, 64],
dtype='float32',
append_batch_size=False)
x = fluid.layers.nn.deformable_roi_pooling(input=input,
rois=rois,
trans=trans,
no_trans=False,
spatial_scale=1.0,
group_size=(1, 1),
pooled_height=8,
pooled_width=8,
part_size=(8, 8),
sample_per_part=4,
trans_std=0.1,
position_sensitive=False)
"""
input_channels = input.shape[1]
if position_sensitive == False:
output_channels = input_channels
else:
output_channels = input_channels / pooled_height / pooled_width
if part_size is None:
part_height = pooled_height
part_width = pooled_width
part_size = [part_height, part_width]
part_size = utils.convert_to_list(part_size, 2, 'part_size')
group_size = utils.convert_to_list(group_size, 2, 'group_size')
helper = LayerHelper('deformable_psroi_pooling', **locals())
dtype = helper.input_dtype()
output = helper.create_variable_for_type_inference(dtype)
top_count = helper.create_variable_for_type_inference(dtype='int32')
helper.append_op(
type="deformable_psroi_pooling",
inputs={"Input": input,
"ROIs": rois,
"Trans": trans},
outputs={"Output": output,
"TopCount": top_count},
attrs={
"no_trans": no_trans,
"spatial_scale": spatial_scale,
"output_dim": output_channels,
"group_size": group_size,
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"part_size": part_size,
"sample_per_part": sample_per_part,
"trans_std": trans_std
})
return output
def var_conv_2d(input,
row,
col,
input_channel,
output_channel,
filter_size,
stride=1,
param_attr=None,
act=None,
dtype='float32',
name=None):
"""
The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with
padding. Besides, input.dims[1] should be 1.
.. code-block:: text
If input_channel is 2 and given row lodTensor and col lodTensor as follows:
row.lod = [[5, 4]]
col.lod = [[6, 7]]
input is a lodTensor:
input.lod = [[60, 56]] # where 60 = input_channel * 5 * 6
input.dims = [116, 1] # where 116 = 60 + 56
If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
output.dims = [174, 1] # where 174 = 90 + 84
Args:
input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
row (Variable): The row shoud be 1-level LodTensor to provide height information.
col (Variable): The col shoud be 1-level LodTensor to provide width information.
input_channel (int): The number of input channel.
output_channel (int): The number of output channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
dtype ('float32'): The data type of parameter and output.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None
Returns:
Variable: Output variable with LoD specified by this layer.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
out = layers.var_conv_2d(input=x_lod_tensor,
row=row_lod_tensor,
col=col_lod_tensor,
input_channel=3,
output_channel=5,
filter_size=[3, 3],
stride=1)
"""
helper = LayerHelper('var_conv_2d', **locals())
x_shape = list(input.shape)
assert len(x_shape) == 2
filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
stride = utils.convert_to_list(stride, 2, 'stride')
filter_shape = [
int(output_channel),
int(input_channel) * filter_size[0] * filter_size[1]
]
filter_param = helper.create_parameter(
attr=helper.param_attr,
shape=filter_shape,
dtype=dtype, )
conv_res = helper.create_variable_for_type_inference(dtype)
tmp_res = helper.create_variable_for_type_inference(
dtype, stop_gradient=True)
helper.append_op(
type='var_conv_2d',
inputs={
'X': input,
'ROW': row,
'COLUMN': col,
'W': filter_param,
},
outputs={"Out": conv_res,
"Col": tmp_res},
attrs={
'InputChannel': input_channel,
'OutputChannel': output_channel,
'StrideH': stride[0],
'StrideW': stride[1],
'KernelH': filter_size[0],
'KernelW': filter_size[1],
})
return helper.append_activation(conv_res)
def match_matrix_tensor(x,
y,
channel_num,
act=None,
param_attr=None,
dtype='float32',
name=None):
"""
Calculate the semantic matching matrix of two word sequences with variable length.
Given a query A of length `n` and a title B of length `m`, the input shape are respectively
[n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
it will generate a learnable parameter matrix W with shape [h, 3, h].
Then the semantic matching matrix of query A and title B is calculated by
A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W`
is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided,
the corresponding activation function will be applied to output matrix.
The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.
.. code-block:: text
Given a 1-level LoDTensor x:
x.lod = [[2, 3, ]]
x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
x.dims = [5, 2]
y is a Tensor:
y.lod = [[3, 1, ]]
y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
y.dims = [4, 2]
set channel_num 2, then we get a 1-level LoDTensor:
out.lod = [[12, 6]] # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
out.dims = [18, 1] # where 18 = 12 + 6
Args:
x (Variable): Input variable x which should be 1-level LodTensor.
y (Variable): Input variable y which should be 1-level LodTensor.
channel_num (int): The channel number of learnable parameter W.
act (str, default None): Activation to be applied to the output of this layer.
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer.
dtype ('float32'): The data type of w data.
name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None
Returns:
Variable: output with LoD specified by this layer.
Examples:
.. code-block:: python
import numpy as np
from paddle.fluid import layers
x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
out, out_tmp = layers.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
"""
helper = LayerHelper('match_matrix_tensor', **locals())
x_shape = list(x.shape)
y_shape = list(y.shape)
assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
-1]
weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
w = helper.create_parameter(
attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
mm_res = helper.create_variable_for_type_inference(dtype)
tmp_res = helper.create_variable_for_type_inference(
dtype, stop_gradient=True)
helper.append_op(
type='match_matrix_tensor',
inputs={
'X': x,
'Y': y,
'W': w,
},
outputs={"Out": mm_res,
"Tmp": tmp_res},
attrs={'dim_t': channel_num})
return helper.append_activation(mm_res), tmp_res
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
"""
This layer creates the sharded index for input. This layers is used in
model- and data- parallel mixed training generally, in which the index
data (usually the label) should be recaculated in each trainer according
to
.. math::
assert index_num % nshards == 0
shard_size = index_num / nshards
y = x % shard_size if x / shard_size == shard_id else ignore_value
We take the distributed one-hot representation to show what this layer is
used for. The distributed one-hot representation is seperated into multiple
shards, and each shard is filling zeros except the one with the index
inside. In order to create these sharded representation in each trainer,
the original index should be recalculated (i.e. sharded) before.
Examples:
X is a Tensor of integer values:
X.shape = [4, 1]
X.data = [[1], [6], [12], [19]]
suppose index_num = 20 and nshards = 2, then we get shard_size = 10
if shard_id == 0, we get the Out:
Out.shape = [4, 1]
Out.data = [[1], [6], [-1], [-1]]
if shard_id == 1, we get the Out:
Out.shape = [4, 1]
Out.data = [[-1], [-1], [2], [9]]
the default `ignore_value` -1 is used in this example.
Args:
input(Variable): Input indices, last dimension must be 1.
index_num(scalar): An interger defining the range of the index.
nshards(scalar): The number of shards
shard_id(scalar): The index of the current shard
ignore_value(scalar): An ingeter value out of sharded index range
Returns:
Variable: The shard index of input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
shard_label = fluid.layers.shard_index(input=label,
index_num=20,
nshards=2,
shard_id=0)
"""
op_type = 'shard_index'
helper = LayerHelper(op_type, **locals())
if index_num % nshards != 0:
raise ValueError(
'The index_num(%d) cannot be evenly divided by nshards(%d)' %
(index_num, nshards))
if shard_id < 0 or shard_id >= nshards:
raise ValueError('The shard_id(%d) should be in [0, %d)' %
(shard_id, nshards))
out = helper.create_variable_for_type_inference(dtype=input.dtype)
helper.append_op(
type=op_type,
inputs={'X': [input]},
outputs={'Out': out},
attrs={
'index_num': index_num,
'nshards': nshards,
'shard_id': shard_id,
'ignore_value': ignore_value
},
stop_gradient=True)
return out
@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
"""
${comment}
Args:
x(Varaible): Input of HardSwish operator.
threshold(float): The threshold parameter of HardSwish operator. Default:threshold=6.0
scale(float): The scale parameter of HardSwish operator. Default:scale=6.0
offset(float): The offset parameter of HardSwish operator. Default:offset=3.0
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: The output tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_swish(x)
"""
helper = LayerHelper('hard_swish', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='hard_swish',
inputs={'X': x},
outputs={'Out': out},
attrs={'threshold': threshold,
'scale': scale,
'offset': offset})
return out