You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
467 lines
14 KiB
467 lines
14 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <ThreadPool.h>
|
|
#include <atomic>
|
|
#include <deque>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "gflags/gflags.h"
|
|
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#include "paddle/fluid/framework/variable.h"
|
|
#include "paddle/fluid/operators/distributed/communicator_common.h"
|
|
#include "paddle/fluid/operators/distributed/distributed.h"
|
|
#include "paddle/fluid/operators/distributed/large_scale_kv.h"
|
|
#include "paddle/fluid/operators/distributed/rpc_client.h"
|
|
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
#include "paddle/fluid/platform/place.h"
|
|
#include "paddle/fluid/string/split.h"
|
|
|
|
DECLARE_bool(communicator_is_sgd_optimizer);
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace distributed {
|
|
|
|
using Scope = framework::Scope;
|
|
using Variable = framework::Variable;
|
|
|
|
template <typename T>
|
|
class BlockingQueue {
|
|
public:
|
|
explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
|
|
PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
|
|
}
|
|
|
|
bool Push(const T &elem) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [&] { return queue_.size() < capacity_; });
|
|
PADDLE_ENFORCE_LT(queue_.size(), capacity_);
|
|
queue_.push_back(elem);
|
|
}
|
|
cv_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool Push(T &&elem) {
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [&] { return queue_.size() < capacity_; });
|
|
PADDLE_ENFORCE_LT(queue_.size(), capacity_);
|
|
queue_.emplace_back(std::move(elem));
|
|
}
|
|
cv_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
T Pop() {
|
|
std::unique_lock<std::mutex> lock(mutex_);
|
|
cv_.wait(lock, [=] { return !queue_.empty(); });
|
|
T rc(std::move(queue_.front()));
|
|
queue_.pop_front();
|
|
cv_.notify_one();
|
|
return rc;
|
|
}
|
|
|
|
size_t Cap() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return capacity_;
|
|
}
|
|
|
|
size_t Size() const {
|
|
std::lock_guard<std::mutex> lock(mutex_);
|
|
return queue_.size();
|
|
}
|
|
|
|
private:
|
|
const size_t capacity_;
|
|
std::deque<T> queue_;
|
|
|
|
mutable std::mutex mutex_;
|
|
std::condition_variable cv_;
|
|
};
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
inline void MergeVars(const std::string &var_name,
|
|
const std::vector<std::shared_ptr<Variable>> &vars,
|
|
Scope *scope, bool merge_add = true) {
|
|
PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
|
|
auto cpu_place = platform::CPUPlace();
|
|
auto &var0 = vars[0];
|
|
auto *out_var = scope->Var(var_name);
|
|
if (var0->IsType<framework::LoDTensor>()) {
|
|
auto dims = var0->Get<framework::LoDTensor>().dims();
|
|
VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims
|
|
<< "; merge add: " << merge_add;
|
|
// init output tensor
|
|
auto *out_t = out_var->GetMutable<framework::LoDTensor>();
|
|
out_t->mutable_data<T>(dims, cpu_place);
|
|
// check the input dims
|
|
for (auto &var : vars) {
|
|
auto &var_t = var->Get<framework::LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
|
|
}
|
|
|
|
// set output tensor to 0.
|
|
auto cpu_ctx = paddle::platform::CPUDeviceContext();
|
|
math::SetConstant<paddle::platform::CPUDeviceContext, T> constant_functor;
|
|
constant_functor(cpu_ctx, out_t, static_cast<T>(0));
|
|
// sum all vars to out
|
|
auto result = EigenVector<T>::Flatten(*out_t);
|
|
for (auto &var : vars) {
|
|
auto &in_t = var->Get<framework::LoDTensor>();
|
|
auto in = EigenVector<T>::Flatten(in_t);
|
|
result.device(*cpu_ctx.eigen_device()) = result + in;
|
|
}
|
|
if (!merge_add) {
|
|
result.device(*cpu_ctx.eigen_device()) =
|
|
result / static_cast<T>(vars.size());
|
|
}
|
|
} else if (var0->IsType<framework::SelectedRows>()) {
|
|
auto &slr0 = var0->Get<framework::SelectedRows>();
|
|
auto *out_slr = out_var->GetMutable<framework::SelectedRows>();
|
|
out_slr->mutable_rows()->clear();
|
|
out_slr->mutable_value()->mutable_data<T>({{}}, cpu_place);
|
|
std::vector<const paddle::framework::SelectedRows *> inputs;
|
|
inputs.reserve(vars.size());
|
|
for (auto &var : vars) {
|
|
inputs.push_back(&var->Get<framework::SelectedRows>());
|
|
}
|
|
auto dev_ctx = paddle::platform::CPUDeviceContext();
|
|
if (merge_add) {
|
|
math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, T> merge_add;
|
|
merge_add(dev_ctx, inputs, out_slr);
|
|
} else {
|
|
math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, T>
|
|
merge_average;
|
|
merge_average(dev_ctx, inputs, out_slr);
|
|
}
|
|
|
|
VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
|
|
<< " dims: " << slr0.value().dims() << "; merge add: " << merge_add;
|
|
} else {
|
|
PADDLE_THROW("unsupported var type!");
|
|
}
|
|
}
|
|
|
|
using RpcCtxMap = std::unordered_map<std::string, CommContext>;
|
|
using SparseValue = std::unordered_map<int64_t, std::vector<float>>;
|
|
|
|
class Communicator {
|
|
public:
|
|
Communicator();
|
|
|
|
explicit Communicator(const std::map<std::string, std::string> &envs_) {
|
|
for (auto &iter : envs_) {
|
|
envs[iter.first] = iter.second;
|
|
}
|
|
}
|
|
|
|
virtual ~Communicator() {}
|
|
|
|
virtual void Start() = 0;
|
|
|
|
virtual void Stop() = 0;
|
|
|
|
virtual bool IsRunning() { return running_; }
|
|
|
|
virtual void Clean() {}
|
|
|
|
virtual void Send(const std::vector<std::string> &var_names,
|
|
const std::vector<std::string> &var_tables,
|
|
const framework::Scope &scope) = 0;
|
|
|
|
virtual void RecvNoBarrier() {}
|
|
|
|
virtual void Barrier() {}
|
|
|
|
virtual void BarrierTriggerDecrement() {}
|
|
|
|
virtual void BarrierTriggerReset(int init_counter) {}
|
|
|
|
virtual void InitEnvs() = 0;
|
|
|
|
virtual void InitImpl(const RpcCtxMap &send_varname_to_ctx,
|
|
const RpcCtxMap &recv_varname_to_ctx,
|
|
Scope *recv_scope) {}
|
|
|
|
static Communicator *GetInstance() { return communicator_.get(); }
|
|
|
|
static std::shared_ptr<Communicator> GetInstantcePtr() {
|
|
return communicator_;
|
|
}
|
|
|
|
template <typename T>
|
|
static Communicator *InitInstance(
|
|
const RpcCtxMap &send_ctx, const RpcCtxMap &recv_ctx, Scope *recv_scope,
|
|
const std::map<std::string, std::string> &envs) {
|
|
std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>, send_ctx,
|
|
recv_ctx, recv_scope, std::ref(envs));
|
|
return communicator_.get();
|
|
}
|
|
|
|
// Init is called by InitInstance.
|
|
template <typename T>
|
|
static void InitWithRpcCtx(const RpcCtxMap &send_ctx,
|
|
const RpcCtxMap &recv_ctx, Scope *recv_scope,
|
|
const std::map<std::string, std::string> &envs) {
|
|
if (communicator_.get() == nullptr) {
|
|
communicator_.reset(new T(std::ref(envs)));
|
|
communicator_->InitEnvs();
|
|
communicator_->InitImpl(send_ctx, recv_ctx, recv_scope);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
bool running_ = false;
|
|
bool waiting_ = true;
|
|
static std::shared_ptr<Communicator> communicator_;
|
|
static std::once_flag init_flag_;
|
|
std::unordered_map<std::string, std::string> envs;
|
|
};
|
|
|
|
class AsyncCommunicator : public Communicator {
|
|
public:
|
|
AsyncCommunicator() : Communicator() {}
|
|
|
|
explicit AsyncCommunicator(const std::map<std::string, std::string> &envs)
|
|
: Communicator(envs) {}
|
|
|
|
~AsyncCommunicator();
|
|
|
|
void InitEnvs() {
|
|
min_send_grad_num_before_recv_ =
|
|
std::stoi(envs.at("communicator_min_send_grad_num_before_recv"));
|
|
thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
|
|
max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
|
|
send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
|
|
send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
|
|
need_global_step_ =
|
|
static_cast<bool>(std::stoi(envs.at("need_global_step")));
|
|
VLOG(0) << "AsyncCommunicator Initialized";
|
|
}
|
|
|
|
void Start() override;
|
|
|
|
void Stop() override;
|
|
|
|
void InitImpl(const RpcCtxMap &send_varname_to_ctx,
|
|
const RpcCtxMap &recv_varname_to_ctx,
|
|
Scope *recv_scope) override;
|
|
|
|
void MainThread();
|
|
|
|
void Send(const std::vector<std::string> &var_names,
|
|
const std::vector<std::string> &var_tables,
|
|
const framework::Scope &scope) override;
|
|
|
|
virtual void SendByCommunicator(int batches);
|
|
|
|
virtual void SendGlobalStep(int batches);
|
|
|
|
virtual void RecvByCommunicator();
|
|
|
|
virtual void RecvNoBarrier();
|
|
|
|
virtual int Meet();
|
|
|
|
virtual void BarrierSend() {}
|
|
|
|
virtual void BarrierRecv() {}
|
|
|
|
virtual void BarrierWeakUp() {}
|
|
|
|
protected:
|
|
int min_send_grad_num_before_recv_;
|
|
int thread_pool_size_;
|
|
int max_merge_var_num_;
|
|
int send_wait_times_;
|
|
int send_queue_size_;
|
|
int trainer_id_ = 0;
|
|
bool need_global_step_ = false;
|
|
|
|
std::unordered_map<std::string,
|
|
std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
|
|
send_varname_to_queue_;
|
|
RpcCtxMap send_varname_to_ctx_;
|
|
RpcCtxMap recv_varname_to_ctx_;
|
|
std::unique_ptr<std::thread> main_thread_{nullptr};
|
|
Scope *recv_scope_; // should be global scope
|
|
std::unique_ptr<Scope> send_scope_; // an independent scope
|
|
std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
|
|
std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
|
|
std::atomic_uint grad_num_{0}; // the num of gradient sent since last recv
|
|
};
|
|
|
|
class HalfAsyncCommunicator : public AsyncCommunicator {
|
|
public:
|
|
HalfAsyncCommunicator() {}
|
|
|
|
explicit HalfAsyncCommunicator(const std::map<std::string, std::string> &envs)
|
|
: AsyncCommunicator(envs) {}
|
|
|
|
void InitEnvs() {
|
|
min_send_grad_num_before_recv_ = 0;
|
|
|
|
max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
|
|
send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
|
|
thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
|
|
send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
|
|
need_global_step_ =
|
|
static_cast<bool>(std::stoi(envs.at("need_global_step")));
|
|
VLOG(0) << "HalfAsyncCommunicator Initialized";
|
|
}
|
|
|
|
void Clean() override;
|
|
|
|
void Barrier() override;
|
|
|
|
void BarrierTriggerDecrement() override;
|
|
|
|
void BarrierTriggerReset(int initial_val) override;
|
|
|
|
int Meet();
|
|
|
|
void BarrierWeakUp();
|
|
|
|
protected:
|
|
// mutex for Wait for barrier
|
|
std::mutex barrier_mutex_;
|
|
std::condition_variable barrier_cond_;
|
|
std::atomic<int64_t> barrier_trigger_{0};
|
|
std::atomic<int64_t> barrier_counter_{0};
|
|
};
|
|
|
|
class SyncCommunicator : public HalfAsyncCommunicator {
|
|
public:
|
|
SyncCommunicator() : HalfAsyncCommunicator() {}
|
|
|
|
explicit SyncCommunicator(const std::map<std::string, std::string> &envs)
|
|
: HalfAsyncCommunicator(envs) {}
|
|
|
|
void InitEnvs() {
|
|
min_send_grad_num_before_recv_ = 0;
|
|
|
|
max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
|
|
send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
|
|
thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
|
|
send_queue_size_ = std::stoi(envs.at("communicator_send_queue_size"));
|
|
need_global_step_ =
|
|
static_cast<bool>(std::stoi(envs.at("need_global_step")));
|
|
|
|
trainer_id_ = std::stoi(envs.at("trainer_id"));
|
|
auto pserver_strings = envs.at("pserver_endpoints");
|
|
pserver_endpoints_ = paddle::string::Split(pserver_strings, ',');
|
|
VLOG(0) << "SyncCommunicator Initialized";
|
|
}
|
|
|
|
void BarrierSend();
|
|
|
|
void BarrierRecv();
|
|
|
|
private:
|
|
std::vector<std::string> pserver_endpoints_{};
|
|
};
|
|
|
|
class GeoCommunicator : public AsyncCommunicator {
|
|
public:
|
|
GeoCommunicator() : AsyncCommunicator() {}
|
|
|
|
explicit GeoCommunicator(const std::map<std::string, std::string> &envs)
|
|
: AsyncCommunicator(envs) {}
|
|
|
|
void InitImpl(const RpcCtxMap &send_varname_to_ctx,
|
|
const RpcCtxMap &recv_varname_to_ctx,
|
|
Scope *recv_scope) override;
|
|
|
|
void InitEnvs() {
|
|
min_send_grad_num_before_recv_ = 0;
|
|
|
|
max_merge_var_num_ = std::stoi(envs.at("communicator_max_merge_var_num"));
|
|
send_wait_times_ = std::stoi(envs.at("communicator_send_wait_times"));
|
|
thread_pool_size_ = std::stoi(envs.at("communicator_thread_pool_size"));
|
|
|
|
send_queue_size_ = max_merge_var_num_;
|
|
trainers_ = std::stoi(envs.at("trainers"));
|
|
sparse_attrs_ = envs.at("sparse_attrs");
|
|
VLOG(0) << "GeoCommunicator Initialized";
|
|
}
|
|
|
|
void Send(const std::vector<std::string> &var_names,
|
|
const std::vector<std::string> &var_tables,
|
|
const framework::Scope &scope) override;
|
|
|
|
void SendByCommunicator(int batches) override;
|
|
|
|
void SendSparse(const std::string &varname, int batches);
|
|
|
|
void SendDense(const std::string &varname);
|
|
|
|
void SendGlobalStep(int batches) override {}
|
|
|
|
void RecvByCommunicator() override;
|
|
|
|
void RecvSparse(const std::string &varname);
|
|
|
|
void RecvDense(const std::string &varname);
|
|
|
|
void Init();
|
|
|
|
void InitSparse();
|
|
|
|
void InitDense(const std::string varname);
|
|
|
|
private:
|
|
int trainers_;
|
|
std::string sparse_attrs_;
|
|
|
|
// parameter for delta calc and send
|
|
std::shared_ptr<Scope> delta_scope_;
|
|
|
|
// parameter for storage the pserver param after last recv
|
|
std::shared_ptr<Scope> old_scope_;
|
|
|
|
// parameter on pserver
|
|
std::shared_ptr<Scope> pserver_scope_;
|
|
|
|
std::unordered_map<std::string,
|
|
std::shared_ptr<BlockingQueue<std::vector<int64_t>>>>
|
|
send_ids_to_queue_;
|
|
|
|
std::unordered_map<std::string, std::shared_ptr<SparseValue>> old_sparses_;
|
|
};
|
|
|
|
} // namespace distributed
|
|
} // namespace operators
|
|
} // namespace paddle
|