You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1128 lines
38 KiB
1128 lines
38 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import ast
|
|
import astor
|
|
import atexit
|
|
import copy
|
|
import collections
|
|
import gast
|
|
import inspect
|
|
import os
|
|
import six
|
|
import tempfile
|
|
import textwrap
|
|
import numpy as np
|
|
|
|
from paddle.fluid import unique_name
|
|
|
|
# imp is deprecated in python3
|
|
if six.PY2:
|
|
import imp
|
|
else:
|
|
from importlib.machinery import SourceFileLoader
|
|
|
|
dygraph_class_to_static_api = {
|
|
"CosineDecay": "cosine_decay",
|
|
"ExponentialDecay": "exponential_decay",
|
|
"InverseTimeDecay": "inverse_time_decay",
|
|
"NaturalExpDecay": "natural_exp_decay",
|
|
"NoamDecay": "noam_decay",
|
|
"PiecewiseDecay": "piecewise_decay",
|
|
"PolynomialDecay": "polynomial_decay",
|
|
}
|
|
|
|
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
|
|
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
|
|
|
|
# FullArgSpec is valid from Python3. Defined a Namedtuple to
|
|
# to make it available in Python2.
|
|
FullArgSpec = collections.namedtuple('FullArgSpec', [
|
|
'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
|
|
'annotations'
|
|
])
|
|
|
|
|
|
def getfullargspec(target):
|
|
if hasattr(inspect, "getfullargspec"):
|
|
return inspect.getfullargspec(target)
|
|
else:
|
|
argspec = inspect.getargspec(target)
|
|
return FullArgSpec(
|
|
args=argspec.args,
|
|
varargs=argspec.varargs,
|
|
varkw=argspec.keywords,
|
|
defaults=argspec.defaults,
|
|
kwonlyargs=[],
|
|
kwonlydefaults=None,
|
|
annotations={})
|
|
|
|
|
|
def parse_arg_and_kwargs(function):
|
|
"""
|
|
Returns full argument names as list. e.g ['x', 'y', 'z']
|
|
"""
|
|
fullargspec = getfullargspec(function)
|
|
arg_names = fullargspec.args
|
|
if arg_names and 'self' == arg_names[0]:
|
|
arg_names = fullargspec.args[1:]
|
|
|
|
# parse default kwargs
|
|
default_kwargs = {}
|
|
default_values = fullargspec.defaults
|
|
if default_values:
|
|
assert len(default_values) <= len(arg_names)
|
|
default_kwarg_names = arg_names[-len(default_values):]
|
|
default_kwargs = dict(zip(default_kwarg_names, default_values))
|
|
|
|
return arg_names, default_kwargs
|
|
|
|
|
|
def type_name(v):
|
|
return type(v).__name__
|
|
|
|
|
|
def make_hashable(x, error_msg=None):
|
|
"""
|
|
Makes input `x` hashable.
|
|
|
|
For some unhashable objects, such as `dict/list/np.ndarray`,applying hash function by using their values.
|
|
"""
|
|
if isinstance(x, (tuple, list)):
|
|
return tuple(map(make_hashable, x))
|
|
|
|
try:
|
|
hash(x)
|
|
except TypeError:
|
|
if isinstance(x, np.ndarray):
|
|
# Note: `tostring()` will return the binary data from np.ndarray that
|
|
# means different value will lead to different hash code.
|
|
return hash(x.tostring())
|
|
elif isinstance(x, dict):
|
|
return tuple(map(make_hashable, x.values()))
|
|
|
|
error_msg = error_msg or "Requires a hashable object."
|
|
raise ValueError(error_msg + " But received type: %s" % type_name(x))
|
|
|
|
return x
|
|
|
|
|
|
def _is_api_in_module_helper(obj, module_prefix):
|
|
m = inspect.getmodule(obj)
|
|
return m is not None and m.__name__.startswith(module_prefix)
|
|
|
|
|
|
def is_api_in_module(node, module_prefix):
|
|
assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
|
|
func_str = astor.to_source(gast.gast_to_ast(node.func))
|
|
try:
|
|
# TODO(liym27):
|
|
# Consider a better to import modules like:
|
|
# source_file = inspect.getfile(dyfunc)
|
|
# import_statements = ImportVisitor(source_file).transform()
|
|
# import_str = "".join(import_statements)
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dygraph
|
|
import paddle.fluid.layers as layers
|
|
|
|
from paddle.fluid.dygraph import to_variable
|
|
from paddle import to_tensor
|
|
|
|
return eval("_is_api_in_module_helper({}, '{}')".format(func_str,
|
|
module_prefix))
|
|
except NameError:
|
|
return False
|
|
|
|
|
|
def is_dygraph_api(node):
|
|
|
|
# Note: A api in module dygraph_to_static is not a real dygraph api.
|
|
if is_api_in_module(node, "paddle.fluid.dygraph.dygraph_to_static"):
|
|
return False
|
|
|
|
# TODO(liym27): A better way to determine whether it is a dygraph api.
|
|
# Consider the decorator @dygraph_only
|
|
return is_api_in_module(node, "paddle.fluid.dygraph")
|
|
|
|
|
|
def is_paddle_api(node):
|
|
return is_api_in_module(node, "paddle")
|
|
|
|
|
|
# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
|
|
def is_numpy_api(node):
|
|
assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
|
|
func_str = astor.to_source(gast.gast_to_ast(node.func))
|
|
try:
|
|
import numpy as np
|
|
module_result = eval("_is_api_in_module_helper({}, '{}')".format(
|
|
func_str, "numpy"))
|
|
# BUG: np.random.uniform doesn't have module and cannot be analyzed
|
|
# TODO: find a better way
|
|
if not module_result:
|
|
return func_str.startswith("numpy.") or func_str.startswith("np.")
|
|
except NameError:
|
|
return False
|
|
|
|
|
|
def is_control_flow_to_transform(node,
|
|
static_analysis_visitor=None,
|
|
var_name_to_type=None):
|
|
"""
|
|
Determines whether the node is a PaddlePaddle control flow statement which needs to
|
|
be transformed into a static graph control flow statement.
|
|
"""
|
|
assert isinstance(node, gast.AST), \
|
|
"The type of input node must be gast.AST, but received %s." % type(node)
|
|
visitor = IsControlFlowVisitor(
|
|
node, static_analysis_visitor, node_var_type_map=var_name_to_type)
|
|
need_to_transform = visitor.transform()
|
|
return need_to_transform
|
|
|
|
|
|
def _delete_keywords_from(node):
|
|
assert isinstance(node, gast.Call)
|
|
func_src = astor.to_source(gast.gast_to_ast(node.func))
|
|
import paddle.fluid as fluid
|
|
full_args = eval("inspect.getargspec({})".format(func_src))
|
|
full_args_name = full_args[0]
|
|
|
|
node.keywords = [k for k in node.keywords if k.arg in full_args_name]
|
|
return
|
|
|
|
|
|
def to_static_api(dygraph_class):
|
|
if dygraph_class in dygraph_class_to_static_api:
|
|
return dygraph_class_to_static_api[dygraph_class]
|
|
else:
|
|
raise NotImplementedError("Paddle dygraph API {} cannot be converted "
|
|
"to static graph at present.".format(
|
|
dygraph_class))
|
|
|
|
|
|
def _add_keywords_to(node, dygraph_api_name):
|
|
assert isinstance(node, gast.Call)
|
|
if dygraph_api_name == "Linear":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "output_dim":
|
|
ast_keyword.arg = "size"
|
|
|
|
node.keywords.append(
|
|
gast.keyword(
|
|
arg="num_flatten_dims",
|
|
value=gast.Constant(
|
|
value=-1, kind=None)))
|
|
|
|
if dygraph_api_name == "BilinearTensorProduct":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "output_dim":
|
|
ast_keyword.arg = "size"
|
|
|
|
if dygraph_api_name == "PRelu":
|
|
for ast_keyword in node.keywords:
|
|
if ast_keyword.arg == "input":
|
|
ast_keyword.arg = "x"
|
|
return
|
|
|
|
|
|
def to_static_ast(node, class_node):
|
|
assert isinstance(node, gast.Call)
|
|
assert isinstance(class_node, gast.Call)
|
|
static_api = to_static_api(class_node.func.attr)
|
|
|
|
node.func = gast.Attribute(
|
|
attr=static_api,
|
|
ctx=gast.Load(),
|
|
value=gast.Attribute(
|
|
attr='layers',
|
|
ctx=gast.Load(),
|
|
value=gast.Name(
|
|
ctx=gast.Load(), id='fluid', annotation=None,
|
|
type_comment=None)))
|
|
|
|
update_args_of_func(node, class_node, 'forward')
|
|
|
|
node.args.extend(class_node.args)
|
|
node.keywords.extend(class_node.keywords)
|
|
_add_keywords_to(node, class_node.func.attr)
|
|
_delete_keywords_from(node)
|
|
|
|
gast.fix_missing_locations(node)
|
|
|
|
return node
|
|
|
|
|
|
def update_args_of_func(node, dygraph_node, method_name):
|
|
assert isinstance(node, gast.Call)
|
|
if method_name not in ["__init__", "forward"]:
|
|
raise ValueError(
|
|
"The method name of class to update args should be '__init__' or 'forward'"
|
|
)
|
|
|
|
class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
|
|
import paddle.fluid as fluid
|
|
if method_name == "__init__" or eval(
|
|
"issubclass({}, fluid.dygraph.Layer)".format(class_src)):
|
|
full_args = eval("inspect.getargspec({}.{})".format(class_src,
|
|
method_name))
|
|
full_args_name = [
|
|
arg_name for arg_name in full_args[0] if arg_name != "self"
|
|
]
|
|
else:
|
|
full_args_name = []
|
|
added_keywords = []
|
|
for idx, arg in enumerate(node.args):
|
|
added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))
|
|
|
|
node.args = []
|
|
node.keywords = added_keywords + node.keywords
|
|
|
|
|
|
def create_api_shape_node(tensor_shape_node):
|
|
assert isinstance(tensor_shape_node,
|
|
(gast.Name, gast.Attribute, gast.Subscript))
|
|
|
|
if isinstance(tensor_shape_node, gast.Name):
|
|
api_shape_node = gast.Call(
|
|
func=gast.parse('fluid.layers.shape').body[0].value,
|
|
args=[tensor_shape_node],
|
|
keywords=[])
|
|
return api_shape_node
|
|
|
|
if isinstance(tensor_shape_node, gast.Attribute):
|
|
api_shape_node = gast.Call(
|
|
func=gast.parse('fluid.layers.shape').body[0].value,
|
|
args=[tensor_shape_node.value],
|
|
keywords=[])
|
|
return api_shape_node
|
|
|
|
if isinstance(tensor_shape_node, gast.Subscript):
|
|
result_node = copy.deepcopy(tensor_shape_node)
|
|
result_node.value = create_api_shape_node(result_node.value)
|
|
return result_node
|
|
|
|
|
|
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
|
|
return gast.parse('%s = fluid.layers.fill_constant(%s, "%s", %s)' %
|
|
(name, str(shape), dtype, str(value)))
|
|
|
|
|
|
def get_attribute_full_name(node):
|
|
assert isinstance(
|
|
node,
|
|
gast.Attribute), "Input non-Attribute node to get attribute full name"
|
|
return astor.to_source(gast.gast_to_ast(node)).strip()
|
|
|
|
|
|
def generate_name_node(name_ids, ctx=gast.Load()):
|
|
"""
|
|
Generate list or gast.Tuple of ast.Name for Return statement.
|
|
"""
|
|
if isinstance(name_ids, six.string_types):
|
|
name_ids = [name_ids]
|
|
if not isinstance(name_ids, (list, tuple, set)):
|
|
raise TypeError('name_ids must be list or tuple or set, but received %s'
|
|
% type(type(name_ids)))
|
|
gast_names = [
|
|
gast.Name(
|
|
id=name_id, ctx=ctx, annotation=None, type_comment=None)
|
|
for name_id in name_ids
|
|
]
|
|
if len(gast_names) == 1:
|
|
name_node = gast_names[0]
|
|
else:
|
|
name_node = gast.Tuple(elts=gast_names, ctx=ctx)
|
|
return name_node
|
|
|
|
|
|
def create_funcDef_node(nodes, name, input_args, return_name_ids):
|
|
"""
|
|
Wrapper all statements of nodes into one ast.FunctionDef, which can be
|
|
called by ast.Call.
|
|
"""
|
|
nodes = copy.copy(nodes)
|
|
# add return statement
|
|
if return_name_ids:
|
|
nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
|
|
else:
|
|
nodes.append(gast.Return(value=None))
|
|
func_def_node = gast.FunctionDef(
|
|
name=name,
|
|
args=input_args,
|
|
body=nodes,
|
|
decorator_list=[],
|
|
returns=None,
|
|
type_comment=None)
|
|
return func_def_node
|
|
|
|
|
|
def index_in_list(array_list, item):
|
|
try:
|
|
return array_list.index(item)
|
|
except ValueError:
|
|
# Item not in array_list
|
|
return -1
|
|
|
|
|
|
def create_assign_node(name, node):
|
|
"""
|
|
Creates a `gast.Assign` node by given name_id as target and node as value.
|
|
"""
|
|
targets = generate_name_node(name, ctx=gast.Store())
|
|
assign_node = gast.Assign(targets=[targets], value=node)
|
|
return targets, assign_node
|
|
|
|
|
|
class RenameTransformer(gast.NodeTransformer):
|
|
def __init__(self, node):
|
|
assert isinstance(
|
|
node, gast.AST), "RenameTransformer only accepts gast.AST as input"
|
|
self.root = node
|
|
self.old_name = ""
|
|
self.new_name = ""
|
|
|
|
def rename(self, old_name, new_name):
|
|
self.old_name = old_name
|
|
self.new_name = new_name
|
|
self.visit(self.root)
|
|
|
|
def visit_Name(self, node):
|
|
self.generic_visit(node)
|
|
if node.id == self.old_name:
|
|
node.id = self.new_name
|
|
return node
|
|
|
|
def visit_Attribute(self, node):
|
|
self.generic_visit(node)
|
|
attr_full_name = get_attribute_full_name(node)
|
|
if attr_full_name == self.old_name:
|
|
new_name_node = gast.parse(self.new_name).body[0].value
|
|
return new_name_node
|
|
return node
|
|
|
|
|
|
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
|
|
"""
|
|
Transform modified AST of decorated function into python callable object.
|
|
TODO: If only decorate one of inner function instead of decorating the main
|
|
function, the other inner functions are invisible for the decorated function.
|
|
"""
|
|
|
|
def remove_if_exit(filepath):
|
|
if os.path.exists(filepath):
|
|
os.remove(filepath)
|
|
|
|
source = ast_to_source_code(ast_root)
|
|
import_fluid = "import paddle.fluid as fluid\n"
|
|
source = import_fluid + source
|
|
|
|
if six.PY2:
|
|
source = source.encode('utf-8')
|
|
f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
|
|
else:
|
|
f = tempfile.NamedTemporaryFile(
|
|
mode='w', suffix='.py', delete=False, encoding='utf-8')
|
|
with f:
|
|
module_name = os.path.basename(f.name[:-3])
|
|
f.write(source)
|
|
|
|
if delete_on_exit:
|
|
atexit.register(lambda: remove_if_exit(f.name))
|
|
atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
|
|
|
|
if six.PY2:
|
|
module = imp.load_source(module_name, f.name)
|
|
else:
|
|
module = SourceFileLoader(module_name, f.name).load_module()
|
|
func_name = dyfunc.__name__
|
|
if not hasattr(module, func_name):
|
|
raise ValueError(
|
|
'Function: %s doesn\'t exist in the Module transformed from AST.' %
|
|
func_name)
|
|
callable_func = getattr(module, func_name)
|
|
# After transform dygraph function into callable_func saved in tmp file,
|
|
# it lost the global variables from imported statements or defined in source file.
|
|
# Recovers the necessary variables by `__globals__`.
|
|
recover_globals_attribute(dyfunc, callable_func)
|
|
|
|
return callable_func, f.name
|
|
|
|
|
|
def recover_globals_attribute(src_obj, dst_obj):
|
|
attr_name = '__globals__'
|
|
|
|
src_globals = getattr(src_obj, attr_name, {})
|
|
dst_globals = getattr(dst_obj, attr_name, {})
|
|
|
|
for k, v in six.iteritems(src_globals):
|
|
# ignore builtin attribute.
|
|
if not (k.startswith('__') and k.endswith('__')):
|
|
dst_globals[k] = v
|
|
|
|
|
|
def func_to_source_code(function, dedent=True):
|
|
"""
|
|
Transforms function into raw string of source code.
|
|
"""
|
|
if not (inspect.isfunction(function) or inspect.ismethod(function)):
|
|
raise TypeError(
|
|
"The type of 'function' should be a function or method, but received {}.".
|
|
format(type(function).__name__))
|
|
source_code = inspect.getsource(function)
|
|
if dedent:
|
|
source_code = textwrap.dedent(source_code)
|
|
|
|
return source_code
|
|
|
|
|
|
def ast_to_source_code(ast_node):
|
|
"""
|
|
Transforms ast node into source code.
|
|
"""
|
|
if not isinstance(ast_node, (gast.AST, ast.AST)):
|
|
raise TypeError(
|
|
"Type of ast_root should be gast.AST or ast.AST, but received %s." %
|
|
type(ast_node))
|
|
if isinstance(ast_node, gast.AST):
|
|
ast_node = gast.gast_to_ast(ast_node)
|
|
source_code = astor.to_source(ast_node)
|
|
return source_code
|
|
|
|
|
|
def is_candidate_node(node):
|
|
"""
|
|
Nodes with specified type will be dependent on tensor.
|
|
"""
|
|
is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
|
|
gast.For, gast.If, gast.While))
|
|
# TODO(Aurelius84): `.numpy()` may be an customized function,
|
|
# and should consider a more elegant way to solve this problem.
|
|
has_numpy_attr = ".numpy()" in ast_to_source_code(node)
|
|
return is_compare_node or has_numpy_attr
|
|
|
|
|
|
def compare_with_none(node):
|
|
"""
|
|
Whether the comparator of `gast.Compare` node is `None`.
|
|
"""
|
|
if isinstance(node, gast.Compare):
|
|
for child in [node.left, node.comparators]:
|
|
# node.comparators is a list.
|
|
if isinstance(child, list):
|
|
child = child[0]
|
|
if (isinstance(child, gast.Constant) and child.value is None) or (
|
|
isinstance(child, gast.Name) and child.id == 'None'):
|
|
return True
|
|
return False
|
|
|
|
|
|
class IsControlFlowVisitor(gast.NodeVisitor):
|
|
"""
|
|
Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
|
|
`ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).
|
|
|
|
If returns True,
|
|
gast.If.test must meet at least one of the following requirements:
|
|
1. involves at least one var whose type is Tensor.
|
|
2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
|
|
3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
|
|
gast.While must meet at least one of the requirements 1 to 5:
|
|
4. has `break` statement.
|
|
5. has `continue` statement.
|
|
gast.For must meet at least one of the requirements 4 to 8:
|
|
6. calls `range` function in `for` statement and the argument of range is Tensor.
|
|
7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
|
|
8. the iterable varaible in `for` statement is Tensor.
|
|
TODO: Support non-range case
|
|
|
|
The following examples should not be considered as control_flow_if:
|
|
1. `if Tensor_var` or `if Tensor_var is None`
|
|
2. if Tensor.shape[i] is determined with fixed value (not -1 or None)
|
|
|
|
Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
|
|
or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).
|
|
|
|
TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
|
|
because reshape_op may be called before this statement.
|
|
"""
|
|
|
|
def __init__(self,
|
|
ast_node,
|
|
static_analysis_visitor=None,
|
|
node_var_type_map=None):
|
|
assert isinstance(
|
|
ast_node, gast.AST
|
|
), "Type of input node should be gast.AST, but received %s." % type(
|
|
ast_node)
|
|
self.ast_root = ast_node
|
|
if static_analysis_visitor is None:
|
|
from .static_analysis import StaticAnalysisVisitor
|
|
static_analysis_visitor = StaticAnalysisVisitor(ast_node)
|
|
self.static_analysis_visitor = static_analysis_visitor
|
|
self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
|
|
)
|
|
self.node_var_type_map = node_var_type_map
|
|
|
|
self.is_control_flow_num = 0
|
|
self._compare_node_tenor_set = set()
|
|
|
|
def transform(self):
|
|
node = self.ast_root
|
|
if isinstance(node, gast.If):
|
|
self._visit_If(node)
|
|
elif isinstance(node, gast.For):
|
|
self._visit_For(node)
|
|
elif isinstance(node, gast.While):
|
|
self._visit_While(node)
|
|
else:
|
|
self.visit(node)
|
|
return self.is_control_flow_num > 0
|
|
|
|
def _visit_If(self, node):
|
|
assert isinstance(node, gast.If)
|
|
self.visit(node.test)
|
|
return
|
|
|
|
def _visit_For(self, node):
|
|
assert isinstance(node, gast.For)
|
|
if isinstance(node.iter, gast.Call):
|
|
# for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
|
|
if isinstance(node.iter.func, gast.Name):
|
|
if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
|
|
for arg in node.iter.args:
|
|
self.visit(arg)
|
|
else:
|
|
return
|
|
# for in var.numpy()
|
|
elif isinstance(node.iter.func, gast.Attribute):
|
|
if node.iter.func.attr == 'numpy':
|
|
self._visit_Call(node.iter)
|
|
else:
|
|
return
|
|
else:
|
|
return
|
|
elif isinstance(node.iter, gast.Name):
|
|
# for in var
|
|
self.visit(node.iter)
|
|
else:
|
|
return
|
|
|
|
for child_node in gast.walk(node):
|
|
if isinstance(child_node, (gast.Continue, gast.Break)):
|
|
self._visit_break_continue(child_node)
|
|
return
|
|
|
|
def _visit_While(self, node):
|
|
assert isinstance(node, gast.While)
|
|
test = node.test
|
|
self.generic_visit(test)
|
|
for child_node in gast.walk(node):
|
|
if isinstance(child_node, (gast.Continue, gast.Break)):
|
|
self._visit_break_continue(child_node)
|
|
return
|
|
|
|
def _visit_break_continue(self, node):
|
|
assert isinstance(node, (gast.Break, gast.Continue))
|
|
wrapper_node = self.node_to_wrapper_map.get(node)
|
|
if not wrapper_node:
|
|
# Transformed node is not in node_to_wrapper_map
|
|
return
|
|
|
|
while wrapper_node.parent:
|
|
parent_node = wrapper_node.parent.node
|
|
if isinstance(parent_node, (gast.For, gast.While)):
|
|
if parent_node is self.ast_root:
|
|
self.is_control_flow_num += 1
|
|
return
|
|
else:
|
|
return
|
|
|
|
wrapper_node = wrapper_node.parent
|
|
|
|
return
|
|
|
|
def visit_BoolOp(self, node):
|
|
for i, child in enumerate(node.values):
|
|
self.visit(child)
|
|
return node
|
|
|
|
def visit_Compare(self, node):
|
|
pre_control_flow_num = self.is_control_flow_num
|
|
if not compare_with_none(node):
|
|
self.generic_visit(node)
|
|
for child in gast.walk(node):
|
|
if isinstance(child, gast.Subscript):
|
|
self._visit_Subscript(child)
|
|
if self.is_control_flow_num > pre_control_flow_num:
|
|
self._compare_node_tenor_set.add(node)
|
|
return node
|
|
|
|
def _visit_Subscript(self, node):
|
|
self.generic_visit(node)
|
|
if hasattr(node, 'value') and isinstance(node.value, gast.Call):
|
|
self._visit_Call(node.value)
|
|
return node
|
|
|
|
def _visit_Call(self, node):
|
|
assert isinstance(node, gast.Call)
|
|
if isinstance(node.func, gast.Attribute):
|
|
attr_node = node.func
|
|
if attr_node.attr == 'numpy':
|
|
self.is_control_flow_num += 1
|
|
|
|
def visit_Call(self, node):
|
|
self._visit_Call(node)
|
|
if is_paddle_api(node):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def visit_Name(self, node):
|
|
if self._is_node_with_tensor(node, node.id):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def visit_Constant(self, node):
|
|
if self._is_node_with_tensor(node, node.value):
|
|
self.is_control_flow_num += 1
|
|
return node
|
|
|
|
def _is_node_with_tensor(self, node, name_id):
|
|
from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType
|
|
|
|
# Look up the node_var_type_map by name_id.
|
|
if self.node_var_type_map:
|
|
if name_id and isinstance(name_id, six.string_types):
|
|
var_type = self.node_var_type_map.get(name_id, None)
|
|
if var_type and var_type & NodeVarType.TENSOR_TYPES:
|
|
return True
|
|
# if not found, look up the node_to_wrapper_map by node.
|
|
wrapper_node = self.node_to_wrapper_map.get(node, None)
|
|
if wrapper_node is not None:
|
|
if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
|
|
return True
|
|
|
|
return False
|
|
|
|
def get_compare_nodes_with_tensor(self):
|
|
return self._compare_node_tenor_set
|
|
|
|
|
|
class NameNodeReplaceTransformer(gast.NodeTransformer):
|
|
"""
|
|
This class replaces specified gast.Name node by replace_node.
|
|
"""
|
|
|
|
def __init__(self, root_node, target_name, replace_node):
|
|
assert isinstance(target_name, str)
|
|
self.target_name = target_name
|
|
self.replace_node = replace_node
|
|
|
|
self.visit(root_node)
|
|
|
|
def visit_Name(self, node):
|
|
if node.id == self.target_name:
|
|
return self.replace_node
|
|
return node
|
|
|
|
|
|
class ForNodeVisitor(object):
|
|
"""
|
|
This class parses python for statement, get transformed 3 statement components of for node
|
|
three key statements:
|
|
1). init_stmts: list[node], prepare nodes of for loop, may not only one
|
|
2). cond_stmt: node, condition node to judge whether continue loop
|
|
3). body_stmts: list[node], updated loop body, sometimes we should change
|
|
the original statement in body, not just append new statement
|
|
|
|
In this process, the semantics of for does not change.
|
|
|
|
Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
|
|
1). for x in range(var[*]|var.numpy()[*])
|
|
2). for x in var|var.numpy()
|
|
3). for i, x enumerate(var|var.numpy())
|
|
"""
|
|
|
|
def __init__(self, for_node):
|
|
assert isinstance(
|
|
for_node, gast.For
|
|
), "Input node for the initialization of ForNodeVisitor is not gast.For node."
|
|
# 1. original for node
|
|
self.node = for_node
|
|
|
|
# 2. gast.For node main parts
|
|
self.target = for_node.target
|
|
# NOTE: type may be Node or list[Node]
|
|
self.iter_args = for_node.iter if self.is_for_iter(
|
|
) else for_node.iter.args
|
|
self.body = for_node.body
|
|
|
|
# 3. key shared node or names
|
|
# - x:
|
|
# - for x in range(***)
|
|
# - for x in var|var.numpy()
|
|
# - for i, x enumerate(var|var.numpy())
|
|
self.iter_var_name = self._get_iter_var_name()
|
|
|
|
# - created index var to slice Variable: __for_loop_var_index_0
|
|
# - for x in var|var.numpy()
|
|
# - for i, x enumerate(var|var.numpy())
|
|
self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)
|
|
|
|
# - created shape var to build loop condition: __for_loop_var_len_0
|
|
# - for x in var|var.numpy()
|
|
# - for i, x enumerate(var|var.numpy())
|
|
# - for x in var
|
|
self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
|
|
|
|
# - var.numpy()/var
|
|
# - for x in var|var.numpy()
|
|
# - for i, x enumerate(var|var.numpy())
|
|
self.iter_node = self._get_iter_node()
|
|
|
|
# - enumeate i:
|
|
# - for i, x enumerate(var|var.numpy())
|
|
self.enum_idx_name = self._get_enum_idx_name()
|
|
|
|
# - range/enumerate args length
|
|
self.args_length = None
|
|
|
|
def parse(self):
|
|
self._args_check()
|
|
if self.is_for_range_iter():
|
|
return self._parse_for_range_stmts()
|
|
elif self.is_for_iter():
|
|
return self._parse_for_stmts()
|
|
elif self.is_for_enumerate_iter():
|
|
return self._parse_for_enumerate_stmts()
|
|
else:
|
|
return None
|
|
|
|
def is_for_range_iter(self):
|
|
return isinstance(self.node.iter, gast.Call) and isinstance(
|
|
self.node.iter.func,
|
|
gast.Name) and self.node.iter.func.id == "range"
|
|
|
|
def is_for_iter(self):
|
|
if isinstance(self.node.iter, (gast.Name, gast.Attribute)):
|
|
return True
|
|
elif isinstance(self.node.iter, gast.Call) and isinstance(
|
|
self.node.iter.func,
|
|
gast.Attribute) and self.node.iter.func.attr == 'numpy':
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def is_for_enumerate_iter(self):
|
|
return isinstance(self.node.iter, gast.Call) and isinstance(
|
|
self.node.iter.func,
|
|
gast.Name) and self.node.iter.func.id == "enumerate"
|
|
|
|
def _args_check(self):
|
|
if self.is_for_range_iter():
|
|
self.args_length = len(self.iter_args)
|
|
assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
|
|
elif self.is_for_enumerate_iter():
|
|
self.args_length = len(self.iter_args)
|
|
assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
|
|
else:
|
|
self.args_length = None
|
|
|
|
def _parse_for_range_stmts(self):
|
|
init_stmts = []
|
|
init_stmts.append(self._build_index_init_node())
|
|
|
|
compare_node = self._build_compare_node()
|
|
step_node = self._build_step_node()
|
|
cond_stmt = self._build_cond_stmt(step_node, compare_node)
|
|
|
|
body_stmts = self.body
|
|
body_stmts.append(self._build_index_increase_node(step_node))
|
|
|
|
return init_stmts, cond_stmt, body_stmts
|
|
|
|
def _parse_for_stmts(self):
|
|
init_stmts = []
|
|
init_stmts.append(self._build_index_init_node())
|
|
init_stmts.append(self._build_var_len_assign_node())
|
|
|
|
compare_node = self._build_compare_node()
|
|
step_node = self._build_step_node()
|
|
cond_stmt = self._build_cond_stmt(step_node, compare_node)
|
|
|
|
body_stmts = self.body
|
|
var_slice_node = self._build_var_slice_node()
|
|
for body_node in body_stmts:
|
|
NameNodeReplaceTransformer(body_node, self.iter_var_name,
|
|
var_slice_node)
|
|
body_stmts.append(self._build_index_increase_node(step_node))
|
|
|
|
return init_stmts, cond_stmt, body_stmts
|
|
|
|
def _parse_for_enumerate_stmts(self):
|
|
init_stmts = []
|
|
init_stmts.append(self._build_index_init_node())
|
|
init_stmts.append(self._build_var_len_assign_node())
|
|
init_stmts.append(self._build_enum_init_node())
|
|
|
|
compare_node = self._build_compare_node()
|
|
step_node = self._build_step_node()
|
|
cond_stmt = self._build_cond_stmt(step_node, compare_node)
|
|
|
|
body_stmts = self.body
|
|
var_slice_node = self._build_var_slice_node()
|
|
for body_node in body_stmts:
|
|
NameNodeReplaceTransformer(body_node, self.iter_var_name,
|
|
var_slice_node)
|
|
body_stmts.append(self._build_index_increase_node(step_node))
|
|
body_stmts.append(self._build_enum_increase_node())
|
|
|
|
return init_stmts, cond_stmt, body_stmts
|
|
|
|
def _build_index_init_node(self):
|
|
if self.is_for_range_iter():
|
|
if self.args_length == 1:
|
|
index_init_value_str = '0'
|
|
else:
|
|
index_init_value_str = ast_to_source_code(self.iter_args[
|
|
0]).strip()
|
|
|
|
index_init_var_name = self.iter_var_name
|
|
else:
|
|
index_init_value_str = '0'
|
|
index_init_var_name = self.iter_idx_name
|
|
|
|
index_init_node_source_str = "{target} = {value}".format(
|
|
target=index_init_var_name, value=index_init_value_str)
|
|
|
|
index_init_node = gast.parse(index_init_node_source_str).body[0]
|
|
|
|
return index_init_node
|
|
|
|
def _build_var_len_assign_node(self):
|
|
# get the length of iterable variable
|
|
if isinstance(self.iter_node, gast.Call) and isinstance(
|
|
self.iter_node.func,
|
|
gast.Attribute) and self.iter_node.func.attr == 'numpy':
|
|
iter_var_name = ast_to_source_code(self.iter_node.func.value).strip(
|
|
)
|
|
else:
|
|
iter_var_name = ast_to_source_code(self.iter_node).strip()
|
|
|
|
convert_len_node_source_str = '{} = fluid.dygraph.dygraph_to_static.convert_operators.convert_len({})'.format(
|
|
self.iter_var_len_name, iter_var_name)
|
|
|
|
convert_len_node = gast.parse(convert_len_node_source_str).body[0]
|
|
|
|
return convert_len_node
|
|
|
|
def _build_enum_init_node(self):
|
|
if self.is_for_enumerate_iter() and self.args_length != 1:
|
|
init_value_str = ast_to_source_code(self.iter_args[1]).strip()
|
|
else:
|
|
init_value_str = '0'
|
|
|
|
enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
|
|
init_value_str)
|
|
enum_init_node = gast.parse(enum_init_node_source_str).body[0]
|
|
return enum_init_node
|
|
|
|
def _build_compare_node(self):
|
|
if self.is_for_range_iter():
|
|
compare_node = self.iter_args[
|
|
0] if self.args_length == 1 else self.iter_args[1]
|
|
else:
|
|
compare_node = gast.Name(
|
|
id=self.iter_var_len_name,
|
|
ctx=gast.Load(),
|
|
annotation=None,
|
|
type_comment=None)
|
|
return compare_node
|
|
|
|
def _build_step_node(self):
|
|
if self.is_for_range_iter():
|
|
step_node = self.iter_args[
|
|
2] if self.args_length == 3 else gast.Constant(
|
|
value=1, kind=None)
|
|
else:
|
|
step_node = gast.Constant(value=1, kind=None)
|
|
return step_node
|
|
|
|
def _build_cond_stmt(self, step_node, compare_node):
|
|
return gast.Compare(
|
|
left=gast.BinOp(
|
|
left=gast.Name(
|
|
id=self.iter_var_name
|
|
if self.is_for_range_iter() else self.iter_idx_name,
|
|
ctx=gast.Load(),
|
|
annotation=None,
|
|
type_comment=None),
|
|
op=gast.Add(),
|
|
right=step_node),
|
|
ops=[gast.LtE()],
|
|
comparators=[compare_node])
|
|
|
|
def _build_index_increase_node(self, step_node):
|
|
return gast.AugAssign(
|
|
target=gast.Name(
|
|
id=self.iter_var_name
|
|
if self.is_for_range_iter() else self.iter_idx_name,
|
|
ctx=gast.Store(),
|
|
annotation=None,
|
|
type_comment=None),
|
|
op=gast.Add(),
|
|
value=step_node)
|
|
|
|
def _build_var_slice_node(self):
|
|
return gast.Subscript(
|
|
value=self.iter_node,
|
|
slice=gast.Index(value=gast.Name(
|
|
id=self.iter_idx_name,
|
|
ctx=gast.Load(),
|
|
annotation=None,
|
|
type_comment=None)),
|
|
ctx=gast.Load())
|
|
|
|
def _build_enum_increase_node(self):
|
|
return gast.AugAssign(
|
|
target=gast.Name(
|
|
id=self.enum_idx_name,
|
|
ctx=gast.Store(),
|
|
annotation=None,
|
|
type_comment=None),
|
|
op=gast.Add(),
|
|
value=gast.Constant(
|
|
value=1, kind=None))
|
|
|
|
def _get_iter_var_name(self):
|
|
if self.is_for_range_iter():
|
|
return self.target.id
|
|
elif self.is_for_iter():
|
|
return self.target.id
|
|
elif self.is_for_enumerate_iter():
|
|
return self.target.elts[1].id
|
|
return None
|
|
|
|
def _get_iter_node(self):
|
|
if self.is_for_iter():
|
|
return self.iter_args
|
|
elif self.is_for_enumerate_iter():
|
|
return self.iter_args[0]
|
|
return None
|
|
|
|
def _get_enum_idx_name(self):
|
|
if self.is_for_enumerate_iter():
|
|
return self.target.elts[0].id
|
|
return None
|
|
|
|
|
|
class SplitAssignTransformer(gast.NodeTransformer):
|
|
"""
|
|
This class transforms sequence assignments and multi-target assignments to normal assignments.
|
|
"""
|
|
|
|
def __init__(self, ast_node):
|
|
assert isinstance(ast_node, gast.AST)
|
|
self.ast_root = ast_node
|
|
|
|
def transform(self):
|
|
self.visit(self.ast_root)
|
|
|
|
def visit_Assign(self, node):
|
|
target_nodes = node.targets
|
|
if len(target_nodes) == 1:
|
|
node = self._parse_sequence_assign(node)
|
|
else:
|
|
node = self._parse_multi_target_assign(node)
|
|
return node
|
|
|
|
def _parse_sequence_assign(self, node):
|
|
"""
|
|
a, b = c, d
|
|
->
|
|
a = c
|
|
b = d
|
|
"""
|
|
assert isinstance(node, gast.Assign)
|
|
|
|
target_nodes = node.targets
|
|
value_node = node.value
|
|
if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
|
|
return node
|
|
if not isinstance(value_node, (gast.List, gast.Tuple)):
|
|
return node
|
|
|
|
targets = node.targets[0].elts
|
|
values = node.value.elts
|
|
if len(targets) != len(values):
|
|
return node
|
|
|
|
new_nodes = []
|
|
for target, value in zip(targets, values):
|
|
assign_node = gast.Assign(targets=[target], value=value)
|
|
new_nodes.append(assign_node)
|
|
|
|
return new_nodes
|
|
|
|
def _parse_multi_target_assign(self, node):
|
|
"""
|
|
Example 1:
|
|
a = b = c
|
|
->
|
|
b = c
|
|
a = b
|
|
|
|
Example 2:
|
|
a, b = c, d = x
|
|
->
|
|
c,d = x
|
|
a = c
|
|
b = d
|
|
"""
|
|
assert isinstance(node, gast.Assign)
|
|
|
|
target_nodes = node.targets
|
|
value_node = node.value
|
|
new_nodes = []
|
|
for target in reversed(target_nodes):
|
|
assign_node = gast.Assign(targets=[target], value=value_node)
|
|
# NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
|
|
# it's necessary to visit this new assign_node
|
|
parsed_node = self.visit_Assign(assign_node)
|
|
if not isinstance(parsed_node, list):
|
|
parsed_node = [parsed_node]
|
|
|
|
new_nodes.extend(parsed_node)
|
|
value_node = target
|
|
|
|
return new_nodes
|
|
|
|
|
|
# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
|
|
def unwrap(func):
|
|
"""
|
|
Returns the object wrapped by decorators.
|
|
"""
|
|
|
|
def _is_wrapped(f):
|
|
return hasattr(f, '__wrapped__')
|
|
|
|
unwrapped_f = func
|
|
while (_is_wrapped(unwrapped_f)):
|
|
unwrapped_f = unwrapped_f.__wrapped__
|
|
|
|
return unwrapped_f
|