You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/math_op_patch.py

365 lines
13 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import warnings
import inspect
from .. import core
from ..framework import Variable, unique_name
from .layer_function_generator import OpProtoHolder
_supported_int_dtype_ = [
core.VarDesc.VarType.UINT8,
core.VarDesc.VarType.INT8,
core.VarDesc.VarType.INT16,
core.VarDesc.VarType.INT32,
core.VarDesc.VarType.INT64,
]
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']
EXPRESSION_MAP = {
"__add__": "A + B",
"__radd__": "A += B",
"__sub__": "A - B",
"__rsub__": "A -= B",
"__mul__": "A * B",
"__rmul__": "A *= B",
"__div__": "A / B",
"__truediv__": "A / B",
"__rdiv__": "A /= B",
"__rtruediv__": "A /= B",
"__pow__": "A ** B",
"__rpow__": "A **= B",
"__floordiv__": "A //B",
"__mod__": "A % B",
"__eq__": "A == B",
"__ne__": "A != B",
"__lt__": "A < B",
"__le__": "A <= B",
"__gt__": "A > B",
"__ge__": "A >= B"
}
_already_patch_variable = False
def monkey_patch_variable():
def unique_tmp_name():
return unique_name.generate("tmp")
def safe_get_dtype(var):
try:
dtype = var.dtype
except:
raise ValueError("Cannot get data type from %s", var.name)
return dtype
def current_block(var):
return var.block.program.current_block()
def create_new_tmp_var(block, dtype):
tmp_name = unique_tmp_name()
return block.create_var(name=tmp_name, dtype=dtype)
def create_tensor(block, value, dtype, shape):
value = float(value)
var = create_new_tmp_var(block, dtype)
block.append_op(
type="fill_constant",
outputs={'Out': [var]},
attrs={
'dtype': var.dtype,
'shape': shape,
'value': value,
'force_cpu': False
},
stop_gradient=True)
var.stop_gradient = True
return var
def create_scalar(block, value, dtype):
return create_tensor(block, value, dtype, shape=[1])
def create_tensor_with_batchsize(ref_var, value, dtype):
assert isinstance(ref_var, Variable)
value = float(value)
block = current_block(ref_var)
var = create_new_tmp_var(block, dtype)
batch_dim = -1
out_shape = []
for i, d in enumerate(ref_var.shape):
if d < 0:
if batch_dim < 0:
batch_dim = i
out_shape.append(d)
else:
out_shape.append(1)
else:
out_shape.append(d)
assert batch_dim != -1
block.append_op(
type='fill_constant_batch_size_like',
outputs={'Out': [var]},
inputs={'Input': [ref_var]},
attrs={
'shape': out_shape,
'value': value,
'input_dim_idx': batch_dim,
'output_dim_idx': batch_dim
},
stop_gradient=True)
var.stop_gradient = True
return var
def astype(self, dtype):
"""
**Notes**:
**The variable must be a** :ref:`api_fluid_Tensor`
Cast a variable to a specified data type.
Args:
self(Variable): The source variable
dtype: The target data type
Returns:
Variable: Variable with new dtype
Examples:
In Static Graph Mode:
.. code-block:: python
import paddle.fluid as fluid
startup_prog = fluid.Program()
main_prog = fluid.Program()
with fluid.program_guard(startup_prog, main_prog):
original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}".format(new_variable.dtype))
In Dygraph Mode:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
original_variable = fluid.dygraph.to_variable(x)
print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
new_variable = original_variable.astype('int64')
print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))
"""
block = current_block(self)
out = create_new_tmp_var(block, dtype)
block.append_op(
type="cast",
inputs={"X": [self]},
outputs={"Out": [out]},
attrs={"in_dtype": self.dtype,
"out_dtype": out.dtype})
return out
def _scalar_op_(var, scale, bias):
block = current_block(var)
out = create_new_tmp_var(block, var.dtype)
block.append_op(
type="scale",
inputs={"X": [var]},
outputs={"Out": [out]},
attrs={"scale": scale,
"bias": bias})
return out
def _neg_(var):
return _scalar_op_(var, -1.0, 0.0)
def _scalar_add_(var, value):
return _scalar_op_(var, 1.0, value)
def _scalar_sub_(var, value):
return _scalar_op_(var, 1.0, -value)
def _scalar_rsub_(var, value):
return _scalar_op_(var, -1.0, value)
def _scalar_mul_(var, value):
return _scalar_op_(var, value, 0.0)
def _scalar_div_(var, value):
return _scalar_op_(var, 1.0 / value, 0.0)
def _binary_creator_(method_name,
op_type,
reverse=False,
scalar_method=None):
def __impl__(self, other_var):
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
# which may lose accuracy. This is a hot fix for release 1.6.
if scalar_method is not None and not (
op_type == 'elementwise_div' and
self.dtype in _supported_int_dtype_):
if isinstance(other_var, float):
if self.dtype in _supported_int_dtype_:
assert other_var == int(other_var), \
"float value {} cannot convert to integer".format(other_var)
return scalar_method(self, other_var)
elif isinstance(other_var, int):
return scalar_method(self, float(other_var))
lhs_dtype = safe_get_dtype(self)
if not isinstance(other_var, Variable):
if reverse:
has_batch_size = False
for elem in self.shape:
if elem < 0:
has_batch_size = True
break
if not has_batch_size:
other_var = create_tensor(
current_block(self),
other_var,
dtype=lhs_dtype,
shape=self.shape)
else:
other_var = create_tensor_with_batchsize(
self, other_var, lhs_dtype)
else:
# add fill_op to current_block
other_var = create_scalar(
current_block(self), value=other_var, dtype=lhs_dtype)
rhs_dtype = safe_get_dtype(other_var)
if lhs_dtype != rhs_dtype:
other_var = astype(other_var, lhs_dtype)
if reverse:
tmp = self
self = other_var
other_var = tmp
# NOTE(zhiqiu): the output of compare operator should be bool.
if method_name in compare_ops:
out = create_new_tmp_var(current_block(self), dtype="bool")
else:
out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)
axis = -1
if other_var.shape[0] == -1:
stack = inspect.stack()[1]
file_name = stack[1]
line_num = stack[2]
warnings.warn(
"%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
"If your code works well in the older versions but crashes in this version, try to use "
"%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
% (file_name, line_num, EXPRESSION_MAP[method_name],
op_type, op_type, EXPRESSION_MAP[method_name]))
current_block(self).append_op(
type=op_type,
inputs={'X': [self],
'Y': [other_var]},
outputs={'Out': out},
attrs={'axis': axis})
return out
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
__impl__.__doc__ = """
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
""".format(comment)
__impl__.__name__ = method_name
return __impl__
variable_methods = [
# b=-a
('__neg__', _neg_),
('astype', astype),
('__add__', _binary_creator_('__add__', 'elementwise_add', False,
_scalar_add_)),
# a+b == b+a. Do not need to reverse explicitly
('__radd__',
_binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
_scalar_sub_)),
('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
_scalar_rsub_)),
('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
_scalar_mul_)),
# a*b == b*a. Do not need to reverse explicitly
('__rmul__',
_binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
('__div__', _binary_creator_('__div__', 'elementwise_div', False,
_scalar_div_)),
('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
False, _scalar_div_)),
('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
None)),
('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
True, None)),
('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
None)),
('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
None)),
('__floordiv__', _binary_creator_('__floordiv__',
'elementwise_floordiv', False, None)),
('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
None)),
# for logical compare
('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
]
global _already_patch_variable
if not _already_patch_variable:
for method in variable_methods:
method_name = method[0]
method_impl = method[1]
setattr(Variable, method_name, method_impl)
else:
import paddle.tensor
variabel_methods = paddle.tensor.linalg.__all__ + \
paddle.tensor.math.__all__ + \
paddle.tensor.logic.__all__ + \
paddle.tensor.manipulation.__all__ + \
paddle.tensor.search.__all__ + \
paddle.tensor.stat.__all__ + \
paddle.tensor.attribute.__all__
for method_name in variabel_methods:
if hasattr(Variable, method_name): continue
method_impl = getattr(paddle.tensor, method_name, None)
if method_impl: setattr(Variable, method_name, method_impl)
_already_patch_variable = True