153 lines
5.3 KiB
153 lines
5.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <glog/logging.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "gflags/gflags.h"
|
|
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
|
|
#include "paddle/fluid/inference/tests/test_helper.h"
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
|
|
namespace paddle {
|
|
|
|
PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
|
|
PaddleTensor pt;
|
|
pt.data.data = t->data<void>();
|
|
|
|
if (t->type() == typeid(int64_t)) {
|
|
pt.data.length = t->numel() * sizeof(int64_t);
|
|
pt.dtype = PaddleDType::INT64;
|
|
} else if (t->type() == typeid(float)) {
|
|
pt.data.length = t->numel() * sizeof(float);
|
|
pt.dtype = PaddleDType::FLOAT32;
|
|
} else {
|
|
LOG(FATAL) << "unsupported type.";
|
|
}
|
|
pt.shape = framework::vectorize2int(t->dims());
|
|
return pt;
|
|
}
|
|
|
|
NativeConfig GetConfig() {
|
|
NativeConfig config;
|
|
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
|
|
LOG(INFO) << "dirname " << config.model_dir;
|
|
config.fraction_of_gpu_memory = 0.15;
|
|
config.use_gpu = true;
|
|
config.device = 0;
|
|
return config;
|
|
}
|
|
|
|
TEST(paddle_inference_api_impl, word2vec) {
|
|
NativeConfig config = GetConfig();
|
|
auto predictor = CreatePaddlePredictor<NativeConfig>(config);
|
|
|
|
framework::LoDTensor first_word, second_word, third_word, fourth_word;
|
|
framework::LoD lod{{0, 1}};
|
|
int64_t dict_size = 2073; // The size of dictionary
|
|
|
|
SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);
|
|
|
|
std::vector<PaddleTensor> paddle_tensor_feeds;
|
|
paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word));
|
|
paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word));
|
|
paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word));
|
|
paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
|
|
ASSERT_EQ(outputs.size(), 1UL);
|
|
size_t len = outputs[0].data.length;
|
|
float* data = static_cast<float*>(outputs[0].data.data);
|
|
for (int j = 0; j < len / sizeof(float); ++j) {
|
|
ASSERT_LT(data[j], 1.0);
|
|
ASSERT_GT(data[j], -1.0);
|
|
}
|
|
|
|
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
|
cpu_feeds.push_back(&first_word);
|
|
cpu_feeds.push_back(&second_word);
|
|
cpu_feeds.push_back(&third_word);
|
|
cpu_feeds.push_back(&fourth_word);
|
|
|
|
framework::LoDTensor output1;
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
TestInference<platform::CPUPlace>(config.model_dir, cpu_feeds, cpu_fetchs1);
|
|
|
|
float* lod_data = output1.data<float>();
|
|
for (size_t i = 0; i < output1.numel(); ++i) {
|
|
EXPECT_LT(lod_data[i] - data[i], 1e-3);
|
|
EXPECT_GT(lod_data[i] - data[i], -1e-3);
|
|
}
|
|
|
|
free(outputs[0].data.data);
|
|
}
|
|
|
|
TEST(paddle_inference_api_impl, image_classification) {
|
|
int batch_size = 2;
|
|
bool use_mkldnn = false;
|
|
bool repeat = false;
|
|
NativeConfig config = GetConfig();
|
|
config.model_dir =
|
|
FLAGS_dirname + "image_classification_resnet.inference.model";
|
|
|
|
const bool is_combined = false;
|
|
std::vector<std::vector<int64_t>> feed_target_shapes =
|
|
GetFeedTargetShapes(config.model_dir, is_combined);
|
|
|
|
framework::LoDTensor input;
|
|
// Use normilized image pixels as input data,
|
|
// which should be in the range [0.0, 1.0].
|
|
feed_target_shapes[0][0] = batch_size;
|
|
framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
|
|
SetupTensor<float>(
|
|
&input, input_dims, static_cast<float>(0), static_cast<float>(1));
|
|
std::vector<framework::LoDTensor*> cpu_feeds;
|
|
cpu_feeds.push_back(&input);
|
|
|
|
framework::LoDTensor output1;
|
|
std::vector<framework::LoDTensor*> cpu_fetchs1;
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
TestInference<platform::CPUPlace, false, true>(config.model_dir,
|
|
cpu_feeds,
|
|
cpu_fetchs1,
|
|
repeat,
|
|
is_combined,
|
|
use_mkldnn);
|
|
|
|
auto predictor = CreatePaddlePredictor(config);
|
|
std::vector<PaddleTensor> paddle_tensor_feeds;
|
|
paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input));
|
|
|
|
std::vector<PaddleTensor> outputs;
|
|
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
|
|
ASSERT_EQ(outputs.size(), 1UL);
|
|
size_t len = outputs[0].data.length;
|
|
float* data = static_cast<float*>(outputs[0].data.data);
|
|
float* lod_data = output1.data<float>();
|
|
for (size_t j = 0; j < len / sizeof(float); ++j) {
|
|
EXPECT_NEAR(lod_data[j], data[j], 1e-3);
|
|
}
|
|
free(data);
|
|
}
|
|
|
|
} // namespace paddle
|