You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.5 KiB
162 lines
5.5 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
|
|
#include "paddle/fluid/inference/tensorrt/engine.h"
|
|
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
namespace plugin {
|
|
|
|
class PReluPlugin : public PluginTensorRT {
|
|
std::vector<float> weight_;
|
|
float* p_gpu_weight_;
|
|
std::string mode_;
|
|
|
|
protected:
|
|
size_t getSerializationSize() override {
|
|
return getBaseSerializationSize() + SerializedSize(mode_.c_str()) +
|
|
SerializedSize(weight_) + SerializedSize(getPluginType());
|
|
}
|
|
|
|
// TRT will call this func when we need to serialize the configuration of
|
|
// tensorrt.
|
|
// It should not be called by users.
|
|
void serialize(void* buffer) override {
|
|
SerializeValue(&buffer, getPluginType());
|
|
serializeBase(buffer);
|
|
SerializeValue(&buffer, weight_);
|
|
SerializeValue(&buffer, mode_.c_str());
|
|
}
|
|
|
|
public:
|
|
PReluPlugin(const float* weight, const int weight_num,
|
|
std::string const& mode)
|
|
: mode_(mode) {
|
|
weight_.resize(weight_num);
|
|
std::copy(weight, weight + weight_num, weight_.data());
|
|
}
|
|
|
|
// It was used for tensorrt deserialization.
|
|
// It should not be called by users.
|
|
PReluPlugin(void const* serialData, size_t serialLength) {
|
|
deserializeBase(serialData, serialLength);
|
|
DeserializeValue(&serialData, &serialLength, &weight_);
|
|
const char* prelu_mode;
|
|
DeserializeValue(&serialData, &serialLength, &prelu_mode);
|
|
mode_ = std::string(prelu_mode);
|
|
}
|
|
~PReluPlugin() {}
|
|
int initialize() override;
|
|
void terminate() override;
|
|
|
|
PReluPlugin* clone() const override {
|
|
auto* ptr = new PReluPlugin(weight_.data(), weight_.size(), mode_);
|
|
ptr->p_gpu_weight_ = p_gpu_weight_;
|
|
return ptr;
|
|
}
|
|
|
|
const char* getPluginType() const override { return "prelu_plugin"; }
|
|
int getNbOutputs() const override { return 1; }
|
|
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
|
|
int nbInputDims) override;
|
|
int enqueue(int batchSize, const void* const* inputs, void** outputs,
|
|
void* workspace, cudaStream_t stream) override;
|
|
};
|
|
|
|
#if IS_TRT_VERSION_GE(6000)
|
|
class PReluPluginDynamic : public DynamicPluginTensorRT {
|
|
public:
|
|
PReluPluginDynamic(const float* weight, const int weight_num,
|
|
std::string const& mode)
|
|
: mode_(mode) {
|
|
weight_.resize(weight_num);
|
|
std::copy(weight, weight + weight_num, weight_.data());
|
|
}
|
|
|
|
// It was used for tensorrt deserialization.
|
|
// It should not be called by users.
|
|
PReluPluginDynamic(void const* serialData, size_t serialLength) {
|
|
deserializeBase(serialData, serialLength);
|
|
DeserializeValue(&serialData, &serialLength, &weight_);
|
|
const char* prelu_mode;
|
|
DeserializeValue(&serialData, &serialLength, &prelu_mode);
|
|
mode_ = std::string(prelu_mode);
|
|
}
|
|
~PReluPluginDynamic() {}
|
|
nvinfer1::IPluginV2DynamicExt* clone() const override {
|
|
auto ptr = new PReluPluginDynamic(weight_.data(), weight_.size(), mode_);
|
|
ptr->p_gpu_weight_ = p_gpu_weight_;
|
|
return ptr;
|
|
}
|
|
|
|
const char* getPluginType() const override { return "prelu_plugin"; }
|
|
int getNbOutputs() const override { return 1; }
|
|
int initialize() override;
|
|
void terminate() override;
|
|
|
|
size_t getSerializationSize() const override;
|
|
void serialize(void* buffer) const override;
|
|
|
|
nvinfer1::DimsExprs getOutputDimensions(
|
|
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
|
|
nvinfer1::IExprBuilder& expr_builder) override;
|
|
|
|
bool supportsFormatCombination(int pos,
|
|
const nvinfer1::PluginTensorDesc* inOut,
|
|
int nbInputs, int nbOutputs) override;
|
|
|
|
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
|
|
int nbInputs,
|
|
const nvinfer1::DynamicPluginTensorDesc* out,
|
|
int nbOutputs) override {}
|
|
|
|
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
|
|
int nbInputs,
|
|
const nvinfer1::PluginTensorDesc* outputs,
|
|
int nbOutputs) const override {
|
|
return 0;
|
|
}
|
|
|
|
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
|
|
const nvinfer1::PluginTensorDesc* outputDesc,
|
|
const void* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) override;
|
|
nvinfer1::DataType getOutputDataType(int index,
|
|
const nvinfer1::DataType* inputTypes,
|
|
int nbInputs) const override;
|
|
|
|
void destroy() override { delete this; }
|
|
|
|
private:
|
|
std::vector<float> weight_;
|
|
float* p_gpu_weight_;
|
|
std::string mode_;
|
|
};
|
|
#endif
|
|
|
|
} // namespace plugin
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|