You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h

162 lines
5.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
class PReluPlugin : public PluginTensorRT {
std::vector<float> weight_;
float* p_gpu_weight_;
std::string mode_;
protected:
size_t getSerializationSize() override {
return getBaseSerializationSize() + SerializedSize(mode_.c_str()) +
SerializedSize(weight_) + SerializedSize(getPluginType());
}
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void serialize(void* buffer) override {
SerializeValue(&buffer, getPluginType());
serializeBase(buffer);
SerializeValue(&buffer, weight_);
SerializeValue(&buffer, mode_.c_str());
}
public:
PReluPlugin(const float* weight, const int weight_num,
std::string const& mode)
: mode_(mode) {
weight_.resize(weight_num);
std::copy(weight, weight + weight_num, weight_.data());
}
// It was used for tensorrt deserialization.
// It should not be called by users.
PReluPlugin(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &weight_);
const char* prelu_mode;
DeserializeValue(&serialData, &serialLength, &prelu_mode);
mode_ = std::string(prelu_mode);
}
~PReluPlugin() {}
int initialize() override;
void terminate() override;
PReluPlugin* clone() const override {
auto* ptr = new PReluPlugin(weight_.data(), weight_.size(), mode_);
ptr->p_gpu_weight_ = p_gpu_weight_;
return ptr;
}
const char* getPluginType() const override { return "prelu_plugin"; }
int getNbOutputs() const override { return 1; }
nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
int nbInputDims) override;
int enqueue(int batchSize, const void* const* inputs, void** outputs,
void* workspace, cudaStream_t stream) override;
};
#if IS_TRT_VERSION_GE(6000)
class PReluPluginDynamic : public DynamicPluginTensorRT {
public:
PReluPluginDynamic(const float* weight, const int weight_num,
std::string const& mode)
: mode_(mode) {
weight_.resize(weight_num);
std::copy(weight, weight + weight_num, weight_.data());
}
// It was used for tensorrt deserialization.
// It should not be called by users.
PReluPluginDynamic(void const* serialData, size_t serialLength) {
deserializeBase(serialData, serialLength);
DeserializeValue(&serialData, &serialLength, &weight_);
const char* prelu_mode;
DeserializeValue(&serialData, &serialLength, &prelu_mode);
mode_ = std::string(prelu_mode);
}
~PReluPluginDynamic() {}
nvinfer1::IPluginV2DynamicExt* clone() const override {
auto ptr = new PReluPluginDynamic(weight_.data(), weight_.size(), mode_);
ptr->p_gpu_weight_ = p_gpu_weight_;
return ptr;
}
const char* getPluginType() const override { return "prelu_plugin"; }
int getNbOutputs() const override { return 1; }
int initialize() override;
void terminate() override;
size_t getSerializationSize() const override;
void serialize(void* buffer) const override;
nvinfer1::DimsExprs getOutputDimensions(
int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
nvinfer1::IExprBuilder& expr_builder) override;
bool supportsFormatCombination(int pos,
const nvinfer1::PluginTensorDesc* inOut,
int nbInputs, int nbOutputs) override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out,
int nbOutputs) override {}
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
int nbInputs,
const nvinfer1::PluginTensorDesc* outputs,
int nbOutputs) const override {
return 0;
}
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) override;
nvinfer1::DataType getOutputDataType(int index,
const nvinfer1::DataType* inputTypes,
int nbInputs) const override;
void destroy() override { delete this; }
private:
std::vector<float> weight_;
float* p_gpu_weight_;
std::string mode_;
};
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle