You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
4.4 KiB
108 lines
4.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/cos_sim_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class CosSimOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
|
|
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
|
|
ctx.Input<Tensor>("Y")->dims(),
|
|
"Dimensions of Input(X) and Input(Y) must be the same.");
|
|
|
|
auto dims = ctx.Input<Tensor>("X")->dims();
|
|
ctx.Output<Tensor>("Out")->Resize({dims[0], 1});
|
|
ctx.Output<Tensor>("XNorm")->Resize({dims[0], 1});
|
|
ctx.Output<Tensor>("YNorm")->Resize({dims[0], 1});
|
|
}
|
|
};
|
|
|
|
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The first input of cos_sim op.");
|
|
AddInput("Y", "The second input of cos_sim op.");
|
|
AddOutput("Out", "The output of cos_sim op.");
|
|
AddOutput("XNorm", "Row norm of the first input.").AsIntermediate();
|
|
AddOutput("YNorm", "Row norm of the second input.").AsIntermediate();
|
|
|
|
AddComment(R"DOC(
|
|
Cosine Similarity Operator.
|
|
|
|
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class CosSimOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
|
|
"Input(XNorm) must not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
|
|
"Input(YNorm) must not be null.");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) must not be null.");
|
|
|
|
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
|
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
|
auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
|
|
auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
|
|
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
|
PADDLE_ENFORCE_EQ(x_dims, y_dims,
|
|
"Dimensions of Input(X) and Input(Y) must be the same.");
|
|
PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0],
|
|
"1st dimension of XNorm must equal that of Input(X).");
|
|
PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one.");
|
|
PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0],
|
|
"1st dimension of YNorm must equal that of Input(Y).");
|
|
PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one.");
|
|
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0],
|
|
"1st dimension of Out@GRAD must equal that of Input(X)");
|
|
PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one.");
|
|
|
|
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
if (x_grad) x_grad->Resize(x_dims);
|
|
if (y_grad) y_grad->Resize(y_dims);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
|
|
ops::CosSimOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(cos_sim,
|
|
ops::CosSimKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);
|