You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc

135 lines
5.0 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_seqpool_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/kernels.h"
namespace paddle {
namespace operators {
void FusionSeqPoolConcatOp::InferShape(
framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
"Inputs(X) of FusionSeqPoolConcatOp should not be empty.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of FusionSeqPoolConcatOp should not be null.");
int axis = ctx->Attrs().Get<int>("axis");
PADDLE_ENFORCE_EQ(axis, 1,
"FusionSeqPoolConcatOp only supports concat axis=1 yet.");
auto ins_dims = ctx->GetInputsDim("X");
const size_t n = ins_dims.size();
PADDLE_ENFORCE_GT(n, 0UL, "Input tensors count should > 0.");
if (n == 1) {
LOG(WARNING) << "Only have one input, may waste memory";
}
// The output height should be confirmed in Compute,
// since input lod is not accessible here.
PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2,
"The dims size of first input should be 2.");
ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)});
}
framework::OpKernelType FusionSeqPoolConcatOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
return framework::OpKernelType(
framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]), ctx.GetPlace());
}
void FusionSeqPoolConcatOpMaker::Make() {
AddInput("X", "(LoDTensor) Input tensors of this operator.").AsDuplicable();
AddOutput("Out", "(LoDTensor) Output tensor of concat operator.");
AddAttr<std::string>("pooltype",
"(string, default 'SUM') some of the pooling "
"pooltype of SequencePoolOp.")
.SetDefault("SUM")
.InEnum({"AVERAGE", "SUM", "SQRT"});
AddAttr<int>("axis",
"The axis along which the input tensors will be concatenated. "
"Only supports concat axis=1 yet.")
.SetDefault(1);
AddComment(R"DOC(
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
)DOC");
}
template <typename T>
class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
std::string pooltype = ctx.Attr<std::string>("pooltype");
auto x0_lod = ins[0]->lod();
auto x0_dims = ins[0]->dims();
auto y_dims = out->dims();
size_t bs = x0_lod[0].size() - 1;
out->Resize({static_cast<int64_t>(bs), y_dims[1]});
framework::LoD y_lod(1);
y_lod[0].resize(bs + 1);
for (size_t i = 0; i <= bs; ++i) {
y_lod[0][i] = i;
}
out->set_lod(y_lod);
auto place = ctx.GetPlace();
T* y_data = out->mutable_data<T>(place);
int w = ins[0]->numel() / x0_dims[0];
PADDLE_ENFORCE_EQ(y_dims[1] % w, 0,
"The output of dims[1] should be dividable of w");
jit::seq_pool_attr_t attr(w, jit::SeqPoolType::kSum);
if (pooltype == "AVERAGE") {
attr.type = jit::SeqPoolType::kAvg;
} else if (pooltype == "SQRT") {
attr.type = jit::SeqPoolType::kSqrt;
}
auto seqpool =
jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache().At(
attr);
size_t n = ins.size();
size_t dst_step_size = n * w;
for (size_t i = 0; i < n; ++i) {
auto x_dims = ins[i]->dims();
auto x_lod = ins[i]->lod()[0];
const T* src = ins[i]->data<T>();
T* dst = y_data + i * w;
PADDLE_ENFORCE_EQ(static_cast<int>(ins[i]->numel() / x_dims[0]), w,
"Width of all inputs should be equal.");
PADDLE_ENFORCE_EQ(x_lod.size(), bs + 1,
"Batchsize of all inputs should be equal.");
for (size_t j = 0; j < bs; ++j) {
attr.h = static_cast<int>(x_lod[j + 1] - x_lod[j]);
seqpool(src, dst, &attr);
dst += dst_step_size;
src += attr.h * attr.w;
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_seqpool_concat, ops::FusionSeqPoolConcatOp,
ops::FusionSeqPoolConcatOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(fusion_seqpool_concat,
ops::FusionSeqPoolConcatKernel<float>,
ops::FusionSeqPoolConcatKernel<double>);