You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
5.0 KiB
135 lines
5.0 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fused/fusion_seqpool_concat_op.h"
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/operators/jit/kernels.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
void FusionSeqPoolConcatOp::InferShape(
|
|
framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
|
|
"Inputs(X) of FusionSeqPoolConcatOp should not be empty.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of FusionSeqPoolConcatOp should not be null.");
|
|
int axis = ctx->Attrs().Get<int>("axis");
|
|
PADDLE_ENFORCE_EQ(axis, 1,
|
|
"FusionSeqPoolConcatOp only supports concat axis=1 yet.");
|
|
|
|
auto ins_dims = ctx->GetInputsDim("X");
|
|
const size_t n = ins_dims.size();
|
|
PADDLE_ENFORCE_GT(n, 0UL, "Input tensors count should > 0.");
|
|
if (n == 1) {
|
|
LOG(WARNING) << "Only have one input, may waste memory";
|
|
}
|
|
|
|
// The output height should be confirmed in Compute,
|
|
// since input lod is not accessible here.
|
|
PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2,
|
|
"The dims size of first input should be 2.");
|
|
ctx->SetOutputDim("Out", {-1, ins_dims[0][axis] * static_cast<int>(n)});
|
|
}
|
|
|
|
framework::OpKernelType FusionSeqPoolConcatOp::GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
return framework::OpKernelType(
|
|
framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]), ctx.GetPlace());
|
|
}
|
|
|
|
void FusionSeqPoolConcatOpMaker::Make() {
|
|
AddInput("X", "(LoDTensor) Input tensors of this operator.").AsDuplicable();
|
|
AddOutput("Out", "(LoDTensor) Output tensor of concat operator.");
|
|
AddAttr<std::string>("pooltype",
|
|
"(string, default 'SUM') some of the pooling "
|
|
"pooltype of SequencePoolOp.")
|
|
.SetDefault("SUM")
|
|
.InEnum({"AVERAGE", "SUM", "SQRT"});
|
|
AddAttr<int>("axis",
|
|
"The axis along which the input tensors will be concatenated. "
|
|
"Only supports concat axis=1 yet.")
|
|
.SetDefault(1);
|
|
AddComment(R"DOC(
|
|
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
|
|
)DOC");
|
|
}
|
|
|
|
template <typename T>
|
|
class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto ins = ctx.MultiInput<LoDTensor>("X");
|
|
auto* out = ctx.Output<LoDTensor>("Out");
|
|
std::string pooltype = ctx.Attr<std::string>("pooltype");
|
|
auto x0_lod = ins[0]->lod();
|
|
auto x0_dims = ins[0]->dims();
|
|
auto y_dims = out->dims();
|
|
size_t bs = x0_lod[0].size() - 1;
|
|
out->Resize({static_cast<int64_t>(bs), y_dims[1]});
|
|
framework::LoD y_lod(1);
|
|
y_lod[0].resize(bs + 1);
|
|
for (size_t i = 0; i <= bs; ++i) {
|
|
y_lod[0][i] = i;
|
|
}
|
|
out->set_lod(y_lod);
|
|
auto place = ctx.GetPlace();
|
|
T* y_data = out->mutable_data<T>(place);
|
|
|
|
int w = ins[0]->numel() / x0_dims[0];
|
|
PADDLE_ENFORCE_EQ(y_dims[1] % w, 0,
|
|
"The output of dims[1] should be dividable of w");
|
|
jit::seq_pool_attr_t attr(w, jit::SeqPoolType::kSum);
|
|
if (pooltype == "AVERAGE") {
|
|
attr.type = jit::SeqPoolType::kAvg;
|
|
} else if (pooltype == "SQRT") {
|
|
attr.type = jit::SeqPoolType::kSqrt;
|
|
}
|
|
auto seqpool =
|
|
jit::KernelFuncs<jit::SeqPoolTuple<T>, platform::CPUPlace>::Cache().At(
|
|
attr);
|
|
size_t n = ins.size();
|
|
size_t dst_step_size = n * w;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
auto x_dims = ins[i]->dims();
|
|
auto x_lod = ins[i]->lod()[0];
|
|
const T* src = ins[i]->data<T>();
|
|
T* dst = y_data + i * w;
|
|
PADDLE_ENFORCE_EQ(static_cast<int>(ins[i]->numel() / x_dims[0]), w,
|
|
"Width of all inputs should be equal.");
|
|
PADDLE_ENFORCE_EQ(x_lod.size(), bs + 1,
|
|
"Batchsize of all inputs should be equal.");
|
|
for (size_t j = 0; j < bs; ++j) {
|
|
attr.h = static_cast<int>(x_lod[j + 1] - x_lod[j]);
|
|
seqpool(src, dst, &attr);
|
|
dst += dst_step_size;
|
|
src += attr.h * attr.w;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fusion_seqpool_concat, ops::FusionSeqPoolConcatOp,
|
|
ops::FusionSeqPoolConcatOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(fusion_seqpool_concat,
|
|
ops::FusionSeqPoolConcatKernel<float>,
|
|
ops::FusionSeqPoolConcatKernel<double>);
|