You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
5.7 KiB
188 lines
5.7 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#include "paddle/utils/Logging.h"
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* A layer for concatenating the first sequence with the second sequence
|
|
* following the first
|
|
* Input: two sequences each containing some instances
|
|
* Output: a concatenated sequence of the two input sequences
|
|
*/
|
|
|
|
class SequenceConcatLayer : public Layer {
|
|
protected:
|
|
std::unique_ptr<Weight> biases_;
|
|
|
|
public:
|
|
explicit SequenceConcatLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
~SequenceConcatLayer() {}
|
|
|
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
void forward(PassType passType);
|
|
void backward(const UpdateCallback& callback = nullptr);
|
|
};
|
|
|
|
REGISTER_LAYER(seqconcat, SequenceConcatLayer);
|
|
|
|
bool SequenceConcatLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
// sequene concatenation layer should have exactly 2 inputs
|
|
CHECK_EQ(2U, inputLayers_.size());
|
|
|
|
/* initialize biases_ */
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
|
}
|
|
|
|
setNeedSequenceInfo(false);
|
|
return true;
|
|
}
|
|
|
|
void SequenceConcatLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
size_t dim = getSize();
|
|
|
|
const Argument& input1 = getInput(0);
|
|
size_t numSequences1 = input1.getNumSequences();
|
|
auto startPositions1 =
|
|
input1.sequenceStartPositions->getVector(false);
|
|
|
|
const Argument& input2 = getInput(1);
|
|
size_t numSequences2 = input2.getNumSequences();
|
|
auto startPositions2 =
|
|
input2.sequenceStartPositions->getVector(false);
|
|
|
|
CHECK_EQ(dim, input1.value->getWidth());
|
|
CHECK_EQ(startPositions1->getData()[numSequences1], input1.getBatchSize());
|
|
CHECK_EQ(numSequences1, startPositions1->getSize() - 1);
|
|
|
|
CHECK_EQ(dim, input2.value->getWidth());
|
|
CHECK_EQ(startPositions2->getData()[numSequences2], input2.getBatchSize());
|
|
CHECK_EQ(numSequences2, startPositions2->getSize() - 1);
|
|
|
|
CHECK_EQ(numSequences1, numSequences2);
|
|
|
|
MatrixPtr inputValue1 = getInputValue(0);
|
|
MatrixPtr inputValue2 = getInputValue(1);
|
|
|
|
// reset output
|
|
reserveOutput(inputValue1->getHeight() + inputValue2->getHeight(), dim);
|
|
|
|
MatrixPtr outputValue = getOutputValue();
|
|
|
|
const int* starts1 = startPositions1->getData();
|
|
const int* starts2 = startPositions2->getData();
|
|
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SequenceConcatLayerForward", getName().c_str());
|
|
|
|
size_t offset = 0;
|
|
size_t leftNumIns = 0;
|
|
size_t rightNumIns = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
|
|
leftNumIns = starts1[seqId + 1] - starts1[seqId];
|
|
outputValue->subMatrix(offset, leftNumIns)
|
|
->assign(*(inputValue1->subMatrix(starts1[seqId], leftNumIns)));
|
|
offset += leftNumIns;
|
|
|
|
rightNumIns = starts2[seqId + 1] - starts2[seqId];
|
|
outputValue->subMatrix(offset, rightNumIns)
|
|
->assign(*(inputValue2->subMatrix(starts2[seqId], rightNumIns)));
|
|
offset += rightNumIns;
|
|
}
|
|
|
|
// modify the sequenceStartPositions
|
|
ICpuGpuVector::resizeOrCreate(output_.sequenceStartPositions,
|
|
numSequences1 + 1, false);
|
|
|
|
int* tgtBuf = output_.sequenceStartPositions->getMutableData(false);
|
|
|
|
for (size_t seqId = 0; seqId < numSequences1 + 1; ++seqId) {
|
|
tgtBuf[seqId] = starts1[seqId] + starts2[seqId];
|
|
}
|
|
}
|
|
|
|
if (biases_.get() != NULL) {
|
|
MatrixPtr outV = getOutputValue();
|
|
outV->addBias(*(biases_->getW()), 1);
|
|
}
|
|
|
|
/* activation */
|
|
forwardActivation();
|
|
}
|
|
|
|
void SequenceConcatLayer::backward(const UpdateCallback& callback) {
|
|
/* activation */
|
|
backwardActivation();
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
|
|
|
|
// Increasing the number of gradient
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
|
|
MatrixPtr inputGrad1 = getInputGrad(0);
|
|
MatrixPtr inputGrad2 = getInputGrad(1);
|
|
MatrixPtr outputGrad = getOutputGrad();
|
|
auto startPositions1 =
|
|
getInput(0).sequenceStartPositions->getVector(false);
|
|
auto startPositions2 =
|
|
getInput(1).sequenceStartPositions->getVector(false);
|
|
|
|
size_t numSequences1 = startPositions1->getSize() - 1;
|
|
size_t numSequences2 = startPositions2->getSize() - 1;
|
|
|
|
CHECK_EQ(numSequences1, numSequences2);
|
|
|
|
const int* starts1 = startPositions1->getData();
|
|
const int* starts2 = startPositions2->getData();
|
|
|
|
{
|
|
AsyncGpuBlock asyncGpuBlock;
|
|
REGISTER_TIMER_INFO("SequenceConcatLayerBackward", getName().c_str());
|
|
|
|
size_t offset = 0;
|
|
size_t leftNumIns = 0;
|
|
size_t rightNumIns = 0;
|
|
for (size_t seqId = 0; seqId < numSequences1; ++seqId) {
|
|
leftNumIns = starts1[seqId + 1] - starts1[seqId];
|
|
inputGrad1->subMatrix(starts1[seqId], leftNumIns)
|
|
->add(*(outputGrad->subMatrix(offset, leftNumIns)));
|
|
offset += leftNumIns;
|
|
|
|
rightNumIns = starts2[seqId + 1] - starts2[seqId];
|
|
inputGrad2->subMatrix(starts2[seqId], rightNumIns)
|
|
->add(*(outputGrad->subMatrix(offset, rightNumIns)));
|
|
offset += rightNumIns;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|