You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
499 lines
20 KiB
499 lines
20 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.framework as framework
|
|
from paddle.fluid.executor import Executor
|
|
from paddle.fluid.framework import Program, program_guard
|
|
from paddle.fluid.backward import append_backward
|
|
|
|
|
|
class TestApiWhileLoop(unittest.TestCase):
|
|
def test_var_tuple(self):
|
|
def cond(i):
|
|
return layers.less_than(i, ten)
|
|
|
|
def body(i):
|
|
return layers.elementwise_add(x=i, y=one)
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
one = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
out = layers.while_loop(cond, body, (i, ))
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
res = exe.run(main_program, fetch_list=out)
|
|
self.assertTrue(
|
|
np.allclose(np.asarray(res[0]), np.full((1), 10, np.int64)))
|
|
|
|
def test_var_list(self):
|
|
def cond(i, mem):
|
|
return layers.less_than(i, ten)
|
|
|
|
def body(i, mem):
|
|
mem = layers.elementwise_add(x=mem, y=one)
|
|
i = layers.increment(i)
|
|
return [i, mem]
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
mem = fluid.data(name='mem', shape=[10], dtype='float32')
|
|
one = layers.fill_constant(shape=[10], dtype='float32', value=1)
|
|
out = layers.while_loop(cond, body, [i, mem])
|
|
|
|
data = np.random.rand(10).astype('float32')
|
|
data_one = np.ones(10).astype('float32')
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
res = exe.run(main_program, feed={'mem': data}, fetch_list=out)
|
|
for i in range(10):
|
|
data = np.add(data, data_one)
|
|
self.assertTrue(np.allclose(np.asarray(res[1]), data))
|
|
|
|
def test_var_dict(self):
|
|
def cond(i, ten, test_dict, test_list, test_list_dict):
|
|
return layers.less_than(i, ten)
|
|
|
|
def body(i, ten, test_dict, test_list, test_list_dict):
|
|
test_dict["test_key"] = i
|
|
test_dict["test_key"] += 1
|
|
|
|
test_list[0] = fluid.layers.reshape(test_list[0], [2, -1]) + 1
|
|
|
|
test_list_dict[0]["test_key"] += 1
|
|
test_list_dict[0]["test_key"] = fluid.layers.relu(test_list_dict[0][
|
|
"test_key"])
|
|
|
|
i = layers.increment(i)
|
|
return [i, ten, test_dict, test_list, test_list_dict]
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
test_data = layers.fill_constant(shape=[1], dtype='int64', value=0)
|
|
|
|
test_dict = {"test_key": test_data}
|
|
test_list = [
|
|
layers.fill_constant(
|
|
shape=[1, 2], dtype='int64', value=0)
|
|
]
|
|
test_list_dict = [{
|
|
"test_key": layers.fill_constant(
|
|
shape=[1], dtype='float32', value=0)
|
|
}]
|
|
|
|
i, ten, test_dict, test_list, test_list_dict = layers.while_loop(
|
|
cond, body, [i, ten, test_dict, test_list, test_list_dict])
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
res = exe.run(main_program,
|
|
fetch_list=[
|
|
test_dict["test_key"], test_list[0],
|
|
test_list_dict[0]["test_key"]
|
|
])
|
|
self.assertTrue(
|
|
np.allclose(
|
|
np.asarray(res[0]),
|
|
np.full(
|
|
shape=(1), fill_value=10, dtype=np.int64)))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
np.asarray(res[1]),
|
|
np.full(
|
|
shape=(2, 1), fill_value=10, dtype=np.int64)))
|
|
self.assertTrue(
|
|
np.allclose(
|
|
np.asarray(res[2]),
|
|
np.full(
|
|
shape=(1), fill_value=10, dtype=np.float32)))
|
|
|
|
|
|
class TestApiWhileLoop_Nested(unittest.TestCase):
|
|
def test_nested_net(self):
|
|
def external_cond(i, j, init, sums):
|
|
return layers.less_than(i, loop_len1)
|
|
|
|
def external_body(i, j, init, sums):
|
|
def internal_cond(j, init, sums):
|
|
return layers.less_than(j, loop_len2)
|
|
|
|
def internal_body(j, init, sums):
|
|
init = layers.elementwise_add(x=init, y=ones)
|
|
sums = layers.elementwise_add(x=init, y=sums)
|
|
j = layers.increment(j)
|
|
return [j, init, sums]
|
|
|
|
result = layers.while_loop(internal_cond, internal_body,
|
|
[j, init, sums])
|
|
j = result[0]
|
|
init = result[1]
|
|
sums = result[2]
|
|
sums = layers.elementwise_add(x=init, y=sums)
|
|
i = layers.increment(i)
|
|
return [i, j, init, sums]
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
j = layers.zeros(shape=[1], dtype='int64')
|
|
init = fluid.data(name='init', shape=[3, 3], dtype='float32')
|
|
sums = fluid.data(name='sums', shape=[3, 3], dtype='float32')
|
|
loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2)
|
|
loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1)
|
|
|
|
out = layers.while_loop(external_cond, external_body,
|
|
[i, j, init, sums])
|
|
|
|
data = np.random.rand(3, 3).astype('float32')
|
|
data_sums = np.zeros([3, 3]).astype('float32')
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
res = exe.run(main_program,
|
|
feed={'init': data,
|
|
'sums': data_sums},
|
|
fetch_list=out)
|
|
for i in range(3):
|
|
data = np.add(data, 1)
|
|
data_sums = np.add(data, data_sums)
|
|
for j in range(2):
|
|
data_sums = np.add(data, data_sums)
|
|
self.assertTrue(np.allclose(np.asarray(res[3]), data_sums))
|
|
|
|
|
|
class TestApiWhileLoop_Backward(unittest.TestCase):
|
|
def test_while_loop_backward(self):
|
|
def cond(i, x):
|
|
return layers.less_than(i, eleven)
|
|
|
|
def body(i, x):
|
|
x = layers.elementwise_mul(x=i, y=i)
|
|
i = layers.increment(i)
|
|
return [i, x]
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
i = fluid.data(name='i', shape=[1], dtype='float32')
|
|
i.stop_gradient = False
|
|
eleven = layers.fill_constant(shape=[1], dtype='float32', value=11)
|
|
one = layers.fill_constant(shape=[1], dtype='float32', value=1)
|
|
x = fluid.data(name='x', shape=[1], dtype='float32')
|
|
x.stop_gradient = False
|
|
|
|
out = layers.while_loop(cond, body, [i, x])
|
|
mean = layers.mean(out[1])
|
|
append_backward(mean)
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
feed_i = np.ones(1).astype('float32')
|
|
feed_x = np.ones(1).astype('float32')
|
|
data = np.asarray([100]).astype('float32')
|
|
i_grad = np.asarray([110]).astype('float32')
|
|
|
|
res = exe.run(main_program,
|
|
feed={'i': feed_i,
|
|
'x': feed_x},
|
|
fetch_list=[mean.name, i.grad_name])
|
|
self.assertTrue(np.allclose(np.asarray(res[0]), data))
|
|
self.assertTrue(np.allclose(np.asarray(res[1]), i_grad))
|
|
|
|
|
|
class TestApiWhileLoop_NestedWithBackwardAndLoDTensorArray(unittest.TestCase):
|
|
def test_nested_net_with_backward_and_lodtensor(self):
|
|
def external_cond(i, j, x, mem_array):
|
|
return layers.less_than(i, array_len)
|
|
|
|
def external_body(i, j, x, mem_array):
|
|
def internal_cond(j, x, mem_array):
|
|
return layers.less_than(j, array_len2)
|
|
|
|
def internal_body(j, x, mem_array):
|
|
inner_data = layers.array_read(array=data_array, i=j)
|
|
inner_prev = layers.array_read(array=mem_array, i=j)
|
|
inner_sum_0 = layers.elementwise_add(x=inner_data, y=inner_prev)
|
|
inner_sum_1 = layers.elementwise_add(x=x, y=inner_sum_0)
|
|
j = layers.increment(x=j, in_place=True)
|
|
layers.array_write(inner_sum_1, i=j, array=mem_array)
|
|
return [j, x, mem_array]
|
|
|
|
outer_data = layers.array_read(array=data_array, i=i)
|
|
outer_prev = layers.array_read(array=mem_array, i=i)
|
|
outer_sum_0 = layers.elementwise_add(x=outer_data, y=outer_prev)
|
|
outer_sum_1 = layers.elementwise_add(x=x, y=outer_sum_0)
|
|
i = layers.increment(x=i, in_place=True)
|
|
layers.array_write(outer_sum_1, i=i, array=mem_array)
|
|
j, x, mem_array = layers.while_loop(internal_cond, internal_body,
|
|
[j, x, mem_array])
|
|
return [i, j, x, mem_array]
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
d0 = fluid.data(name='d0', shape=[10], dtype='float32')
|
|
d1 = fluid.data(name='d1', shape=[10], dtype='float32')
|
|
d2 = fluid.data(name='d2', shape=[10], dtype='float32')
|
|
x = fluid.data(name='x', shape=[10], dtype='float32')
|
|
x.stop_gradient = False
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
i.stop_gradient = True
|
|
init = layers.zeros(shape=[10], dtype='float32')
|
|
mem_array = layers.array_write(x=init, i=i)
|
|
data_array = layers.array_write(x=d0, i=i)
|
|
i = layers.increment(i)
|
|
layers.array_write(d1, i, array=data_array)
|
|
i = layers.increment(i)
|
|
layers.array_write(d2, i, array=data_array)
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
i.stop_gradient = True
|
|
array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
j = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
j.stop_gradient = True
|
|
array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
|
|
out = layers.while_loop(external_cond, external_body,
|
|
[i, j, x, mem_array])
|
|
|
|
sum_result = layers.array_read(array=mem_array, i=j)
|
|
mean = layers.mean(sum_result)
|
|
append_backward(mean)
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
d = []
|
|
for i in range(3):
|
|
d.append(np.random.random(size=[10]).astype('float32'))
|
|
feed_x = np.ones(10).astype('float32')
|
|
data_sum = d[0] + d[1] + d[2] + 3 * feed_x
|
|
x_grad = [0.3] * 10
|
|
res = exe.run(
|
|
main_program,
|
|
feed={'d0': d[0],
|
|
'd1': d[1],
|
|
'd2': d[2],
|
|
'x': feed_x},
|
|
fetch_list=[sum_result.name, x.grad_name])
|
|
self.assertTrue(np.allclose(res[0], data_sum))
|
|
self.assertTrue(np.allclose(res[1], x_grad))
|
|
|
|
|
|
class TestApiWhileLoopWithSwitchCase(unittest.TestCase):
|
|
def test_with_switch_case(self):
|
|
def cond(i):
|
|
return layers.less_than(i, ten)
|
|
|
|
def body(i):
|
|
def fn_add_three():
|
|
data_add_three = layers.elementwise_add(x=i, y=three)
|
|
return data_add_three
|
|
|
|
def fn_square():
|
|
data_mul_data = layers.elementwise_mul(x=i, y=i)
|
|
return data_mul_data
|
|
|
|
def fn_add_one():
|
|
data_add_one = layers.elementwise_add(x=i, y=one)
|
|
return data_add_one
|
|
|
|
return layers.switch_case(
|
|
branch_index=i,
|
|
branch_fns={2: fn_add_three,
|
|
5: fn_square},
|
|
default=fn_add_one)
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
i = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
three = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
one = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
out = layers.while_loop(cond, body, [i])
|
|
|
|
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
|
) else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
res = exe.run(main_program, fetch_list=out)
|
|
|
|
data = np.asarray([25]).astype('int64')
|
|
self.assertTrue(np.allclose(np.asarray(res[0]), data))
|
|
|
|
|
|
class TestApiWhileLoop_Error(unittest.TestCase):
|
|
def test_error(self):
|
|
def cond_returns_constant(i):
|
|
return 1
|
|
|
|
def cond_returns_not_bool_tensor(i):
|
|
return layers.increment(i)
|
|
|
|
def cond_returns_bool_tensor(i):
|
|
return layers.less_than(i, ten)
|
|
|
|
def cond_returns_2d_tensor(i):
|
|
return layers.less_than(i, ten_2d)
|
|
|
|
def cond_receives_two_args(i, ten):
|
|
return layers.less_than(i, ten)
|
|
|
|
def body(i):
|
|
return layers.increment(i)
|
|
|
|
def body_returns_error_length(i):
|
|
i = layers.increment(i)
|
|
return [i, i]
|
|
|
|
def body_returns_error_type(i, ten):
|
|
return layers.increment(i)
|
|
|
|
def cond_returns_with_mutable_dict(i, test_dict):
|
|
return i > 0
|
|
|
|
def body_returns_with_mutable_dict(i, test_dict):
|
|
test_dict['new_key'] = layers.fill_constant(
|
|
shape=[1], dtype='int64', value=1)
|
|
return layers.increment(i), test_dict
|
|
|
|
def cond_returns_with_mutable_list(i, test_list):
|
|
return i > 0
|
|
|
|
def body_returns_with_mutable_list(i, test_list):
|
|
test_list.append(
|
|
layers.fill_constant(
|
|
shape=[1], dtype='int64', value=1))
|
|
return layers.increment(i), test_list
|
|
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with program_guard(main_program, startup_program):
|
|
data = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
data_1d = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
data_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=1)
|
|
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
|
ten_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=10)
|
|
|
|
# The type of `cond` in Op(while_loop) must be callable
|
|
def type_error_cond():
|
|
out = layers.while_loop(data, body, [data_1d])
|
|
|
|
self.assertRaises(TypeError, type_error_cond)
|
|
|
|
# The type of `body` in Op(while_loop) must be callable
|
|
def type_error_body():
|
|
out = layers.while_loop(cond_returns_bool_tensor, data,
|
|
[data_1d])
|
|
|
|
self.assertRaises(TypeError, type_error_body)
|
|
|
|
# The type of `loop_vars` in Op(while_loop) must be list or tuple
|
|
def type_error_loop_vars():
|
|
out = layers.while_loop(cond_returns_bool_tensor, body, data_1d)
|
|
|
|
self.assertRaises(TypeError, type_error_loop_vars)
|
|
|
|
# The value of `loop_vars` is empty
|
|
def value_error_loop_vars():
|
|
out = layers.while_loop(cond_returns_bool_tensor, body, [])
|
|
|
|
self.assertRaises(ValueError, value_error_loop_vars)
|
|
|
|
# The type of `cond` returns in Op(while_loop) must be Variable
|
|
def type_error_cond_returns_not_variable():
|
|
out = layers.while_loop(cond_returns_constant, body, [data_1d])
|
|
|
|
self.assertRaises(TypeError, type_error_cond_returns_not_variable)
|
|
|
|
# The type of `cond` returns in Op(while_loop) must be a bollean variable
|
|
def type_error_cond_returns_not_boolean():
|
|
out = layers.while_loop(cond_returns_not_bool_tensor, body,
|
|
[data_1d])
|
|
|
|
self.assertRaises(TypeError, type_error_cond_returns_not_boolean)
|
|
|
|
# The shape of `cond` returns in Op(while_loop) must be 1
|
|
def type_error_shape_cond_returns_2d():
|
|
out = layers.while_loop(cond_returns_2d_tensor, body, [data_2d])
|
|
|
|
self.assertRaises(TypeError, type_error_shape_cond_returns_2d)
|
|
|
|
# The length of `body` returns in Op(while_loop) must be same as `loop_vars`
|
|
def value_error_body_returns_error_length():
|
|
out = layers.while_loop(cond_returns_bool_tensor,
|
|
body_returns_error_length, [data])
|
|
|
|
self.assertRaises(ValueError, value_error_body_returns_error_length)
|
|
|
|
# The type of `body` returns in Op(while_loop) must be same as `loop_vars`
|
|
def value_error_body_returns_error_type():
|
|
out = layers.while_loop(cond_receives_two_args,
|
|
body_returns_error_type, [data, ten])
|
|
|
|
self.assertRaises(ValueError, value_error_body_returns_error_type)
|
|
|
|
# The length of `output_vars` with mutable value should keep same with `loop_vars`
|
|
def value_error_body_returns_with_mutable_dict():
|
|
test_dict = {
|
|
"int_constant": layers.fill_constant(
|
|
shape=[2, 2], dtype='int64', value=1)
|
|
}
|
|
out = layers.while_loop(cond_returns_with_mutable_dict,
|
|
body_returns_with_mutable_dict,
|
|
[data, test_dict])
|
|
|
|
self.assertRaises(ValueError,
|
|
value_error_body_returns_with_mutable_dict)
|
|
|
|
def value_error_body_returns_with_mutable_list():
|
|
test_list = [
|
|
layers.fill_constant(
|
|
shape=[2, 2], dtype='int64', value=1)
|
|
]
|
|
out = layers.while_loop(cond_returns_with_mutable_list,
|
|
body_returns_with_mutable_list,
|
|
[data, test_list])
|
|
|
|
self.assertRaises(ValueError,
|
|
value_error_body_returns_with_mutable_list)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|