You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.9 KiB
168 lines
5.9 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
struct DataRecord {
|
|
std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
|
|
std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
|
|
std::vector<size_t> lod; // two inputs have the same lod info.
|
|
size_t batch_iter{0};
|
|
size_t batch_size{1};
|
|
size_t num_samples; // total number of samples
|
|
DataRecord() = default;
|
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
|
: batch_size(batch_size) {
|
|
Load(path);
|
|
}
|
|
DataRecord NextBatch() {
|
|
DataRecord data;
|
|
size_t batch_end = batch_iter + batch_size;
|
|
// NOTE skip the final batch, if no enough data is provided.
|
|
if (batch_end <= word_data_all.size()) {
|
|
data.word_data_all.assign(word_data_all.begin() + batch_iter,
|
|
word_data_all.begin() + batch_end);
|
|
data.mention_data_all.assign(mention_data_all.begin() + batch_iter,
|
|
mention_data_all.begin() + batch_end);
|
|
// Prepare LoDs
|
|
data.lod.push_back(0);
|
|
CHECK(!data.word_data_all.empty());
|
|
CHECK(!data.mention_data_all.empty());
|
|
CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
|
|
for (size_t j = 0; j < data.word_data_all.size(); j++) {
|
|
data.rnn_word_datas.push_back(data.word_data_all[j]);
|
|
data.rnn_mention_datas.push_back(data.mention_data_all[j]);
|
|
// calculate lod
|
|
data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
|
|
}
|
|
}
|
|
batch_iter += batch_size;
|
|
return data;
|
|
}
|
|
void Load(const std::string &path) {
|
|
std::ifstream file(path);
|
|
std::string line;
|
|
int num_lines = 0;
|
|
while (std::getline(file, line)) {
|
|
num_lines++;
|
|
std::vector<std::string> data;
|
|
split(line, ';', &data);
|
|
// load word data
|
|
std::vector<int64_t> word_data;
|
|
split_to_int64(data[1], ' ', &word_data);
|
|
// load mention data
|
|
std::vector<int64_t> mention_data;
|
|
split_to_int64(data[3], ' ', &mention_data);
|
|
word_data_all.push_back(std::move(word_data));
|
|
mention_data_all.push_back(std::move(mention_data));
|
|
}
|
|
num_samples = num_lines;
|
|
}
|
|
};
|
|
|
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
|
int batch_size) {
|
|
PaddleTensor lod_word_tensor, lod_mention_tensor;
|
|
lod_word_tensor.name = "word";
|
|
lod_mention_tensor.name = "mention";
|
|
auto one_batch = data->NextBatch();
|
|
int size = one_batch.lod[one_batch.lod.size() - 1]; // token batch size
|
|
lod_word_tensor.shape.assign({size, 1});
|
|
lod_word_tensor.lod.assign({one_batch.lod});
|
|
lod_mention_tensor.shape.assign({size, 1});
|
|
lod_mention_tensor.lod.assign({one_batch.lod});
|
|
// assign data
|
|
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
|
|
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
|
|
// Set inputs.
|
|
input_slots->assign({lod_word_tensor, lod_mention_tensor});
|
|
for (auto &tensor : *input_slots) {
|
|
tensor.dtype = PaddleDType::INT64;
|
|
}
|
|
}
|
|
|
|
void SetConfig(contrib::AnalysisConfig *cfg) {
|
|
cfg->prog_file = FLAGS_infer_model + "/__model__";
|
|
cfg->param_file = FLAGS_infer_model + "/param";
|
|
cfg->use_gpu = false;
|
|
cfg->device = 0;
|
|
cfg->specify_input_name = true;
|
|
cfg->enable_ir_optim = true;
|
|
}
|
|
|
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
|
std::vector<PaddleTensor> input_slots;
|
|
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
|
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
|
|
for (int bid = 0; bid < epoch; ++bid) {
|
|
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
|
(*inputs).emplace_back(input_slots);
|
|
}
|
|
}
|
|
|
|
// Easy for profiling independently.
|
|
TEST(Analyzer_Chinese_ner, profile) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
std::vector<PaddleTensor> outputs;
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
|
|
|
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
|
// the first inference result
|
|
const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26,
|
|
48, 39, 38, 16, 25};
|
|
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
|
|
size_t size = GetSize(outputs[0]);
|
|
PADDLE_ENFORCE_GT(size, 0);
|
|
int64_t *result = static_cast<int64_t *>(outputs[0].data.data());
|
|
for (size_t i = 0; i < std::min(11UL, size); i++) {
|
|
EXPECT_EQ(result[i], chinese_ner_result_data[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_Chinese_ner, fuse_statis) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
int num_ops;
|
|
auto fuse_statis = GetFuseStatis(cfg, &num_ops);
|
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 2);
|
|
EXPECT_EQ(num_ops, 14);
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
TEST(Analyzer_Chinese_ner, compare) {
|
|
contrib::AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
|
SetInput(&input_slots_all);
|
|
CompareNativeAndAnalysis(cfg, input_slots_all);
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|