You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
18 KiB
460 lines
18 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/executor.h"
|
|
#include "paddle/fluid/framework/lod_tensor_array.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/framework/var_type.h"
|
|
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
|
|
#include "paddle/fluid/operators/detail/safe_ref.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using StepScopeVar = std::vector<framework::Scope *>;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
namespace { // NOLINT
|
|
static std::string GetSkipEagerDeletionVarsDebugString(
|
|
const std::vector<std::string> &vars) {
|
|
std::string str = "Skip " + std::to_string(vars.size()) +
|
|
" var(s) in eager deletion mode: ";
|
|
for (auto &var : vars) {
|
|
str.append(var);
|
|
str.push_back(' ');
|
|
}
|
|
return str;
|
|
}
|
|
} // NOLINT
|
|
|
|
class WhileOp : public framework::OperatorBase {
|
|
public:
|
|
WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: framework::OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
private:
|
|
void RunImpl(const framework::Scope &scope,
|
|
const platform::Place &dev_place) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
|
|
|
|
auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
|
|
PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));
|
|
|
|
framework::Executor executor(dev_place);
|
|
auto *block = Attr<framework::BlockDesc *>(kStepBlock);
|
|
|
|
auto *program = block->Program();
|
|
|
|
auto step_scopes =
|
|
scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();
|
|
|
|
PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
|
|
"Condition of while op must in CPU memory.");
|
|
|
|
bool is_test = Attr<bool>("is_test");
|
|
auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
|
|
VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
|
|
|
|
auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
|
|
if (!is_test) {
|
|
while (cond.data<bool>()[0]) {
|
|
auto ¤t_scope = scope.NewScope();
|
|
step_scopes->push_back(¤t_scope);
|
|
executor.RunPreparedContext(ctx.get(), ¤t_scope, false, true,
|
|
true);
|
|
}
|
|
} else {
|
|
auto ¤t_scope = scope.NewScope();
|
|
executor.CreateVariables(*program, ¤t_scope, block->ID());
|
|
while (cond.data<bool>()[0]) {
|
|
for (auto &name : current_scope.LocalVarNames()) {
|
|
auto *var = current_scope.Var(name);
|
|
if (var->IsType<framework::LoDTensor>()) {
|
|
// Clear all lod information for all lod_tensors.
|
|
auto *t = var->GetMutable<framework::LoDTensor>();
|
|
framework::LoD empty_lod;
|
|
t->set_lod(empty_lod);
|
|
} else if (var->IsType<framework::LoDTensorArray>()) {
|
|
// Clear elements of all tensor arrays.
|
|
auto *t = var->GetMutable<framework::LoDTensorArray>();
|
|
t->clear();
|
|
}
|
|
}
|
|
executor.RunPreparedContext(ctx.get(), ¤t_scope, false, false,
|
|
false);
|
|
}
|
|
scope.DeleteScope(¤t_scope);
|
|
}
|
|
}
|
|
};
|
|
|
|
class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput(kX,
|
|
"A set of variables, which are required by operators inside the "
|
|
"block of While Op.")
|
|
.AsDuplicable();
|
|
AddInput(
|
|
kCondition,
|
|
"(Bool) An scalar. When it's False, the While Op will be terminated.")
|
|
.AsDuplicable();
|
|
AddOutput(kOutputs,
|
|
"A set of variables, which will be assigned with values "
|
|
"generated by the operators inside the block of While Op.")
|
|
.AsDuplicable();
|
|
AddOutput(kStepScopes,
|
|
"(StepScopeVar) A vector of local scope, which size equals the "
|
|
"step number of While Op. The i'th scope storages temporary "
|
|
"variables generated in the i'th step.");
|
|
AddAttr<framework::BlockDesc *>(kStepBlock,
|
|
"The step block inside WhileOp");
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<std::string>>(kSkipEagerDeletionVars,
|
|
"Vars that would skip eager deletion."
|
|
"Users should not set this manually.")
|
|
.SetDefault(std::vector<std::string>());
|
|
AddComment(R"DOC(
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class WhileGradOp : public framework::OperatorBase {
|
|
public:
|
|
WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: framework::OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
private:
|
|
void RunImpl(const framework::Scope &scope,
|
|
const platform::Place &dev_place) const override {
|
|
PADDLE_ENFORCE(!Attr<bool>("is_test"),
|
|
"GradOp is only callable when is_test is false");
|
|
// get device context from pool
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(dev_place);
|
|
framework::Executor executor(dev_place);
|
|
auto *block = Attr<framework::BlockDesc *>(kStepBlock);
|
|
auto *program = block->Program();
|
|
|
|
auto &skip_vars = Attr<std::vector<std::string>>(kSkipEagerDeletionVars);
|
|
VLOG(2) << GetSkipEagerDeletionVarsDebugString(skip_vars);
|
|
auto ctx = executor.Prepare(*program, block->ID(), skip_vars);
|
|
|
|
auto *step_scopes =
|
|
scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();
|
|
|
|
auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
|
|
auto inside_og_names =
|
|
Attr<std::vector<std::string>>("original_output_grad");
|
|
|
|
PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());
|
|
|
|
for (auto cur_scope_iter = step_scopes->rbegin();
|
|
cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
|
|
VLOG(3) << "Start backward at time_step "
|
|
<< cur_scope_iter - step_scopes->rbegin();
|
|
framework::Scope &cur_scope = **cur_scope_iter;
|
|
// Link OG from outside to inside
|
|
for (size_t i = 0; i < outside_og_names.size(); ++i) {
|
|
auto outside_og_name = outside_og_names[i];
|
|
auto inside_og_name = inside_og_names[i];
|
|
VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
|
|
<< inside_og_name;
|
|
if (scope.FindVar(outside_og_name) == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
auto &og_outside =
|
|
detail::Ref(scope.FindVar(outside_og_name),
|
|
"Cannot find Outside Gradient %s", outside_og_name);
|
|
auto &og_inside =
|
|
detail::Ref(cur_scope.Var(inside_og_name),
|
|
"Cannot find inside gradient %s", inside_og_name);
|
|
if (og_outside.IsType<framework::LoDTensor>()) {
|
|
auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
|
|
auto &inside_tensor =
|
|
detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
|
|
inside_tensor.set_lod(outside_tensor.lod());
|
|
inside_tensor.ShareDataWith(outside_tensor);
|
|
} else if (og_outside.IsType<framework::LoDTensorArray>()) {
|
|
auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
|
|
auto &inside_array =
|
|
detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
|
|
VLOG(8) << outside_og_name << " size = " << outside_array.size();
|
|
inside_array.resize(outside_array.size());
|
|
|
|
for (size_t j = 0; j < inside_array.size(); ++j) {
|
|
VLOG(8) << j << " " << outside_array[j].numel();
|
|
if (outside_array[j].numel() != 0) {
|
|
inside_array[j].set_lod(outside_array[j].lod());
|
|
inside_array[j].ShareDataWith(outside_array[j]);
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
|
|
}
|
|
}
|
|
} else {
|
|
PADDLE_THROW("Currently only support LoDTensor and LoDTensorArray.");
|
|
}
|
|
}
|
|
executor.RunPreparedContext(ctx.get(), *cur_scope_iter, false, true,
|
|
true);
|
|
|
|
// The Outputs(kXGRAD) contains the names of the gradient of parameters
|
|
// and inputs.
|
|
auto &pg_ig_names = Outputs(kXGRAD);
|
|
auto &p_names = Inputs(kX);
|
|
PADDLE_ENFORCE_EQ(pg_ig_names.size(), p_names.size());
|
|
for (size_t param_id = 0; param_id < pg_ig_names.size(); ++param_id) {
|
|
if (pg_ig_names[param_id] == framework::kEmptyVarName) {
|
|
continue; // parameter doesn't have gradient
|
|
}
|
|
auto inside_grad_name = framework::GradVarName(p_names[param_id]);
|
|
|
|
// for some grad_op, their input doesn't have gradient,
|
|
// for example lookup_table_grad_op, the input(Idx) doesn't have
|
|
// gradient.
|
|
auto pg_ig_var = cur_scope.FindVar(inside_grad_name);
|
|
PADDLE_ENFORCE(pg_ig_var != nullptr);
|
|
if (pg_ig_var->IsType<framework::LoDTensorArray>()) {
|
|
auto pg_ig_lod_t_arr =
|
|
pg_ig_var->GetMutable<framework::LoDTensorArray>();
|
|
bool empty = true;
|
|
for (auto &each : *pg_ig_lod_t_arr) {
|
|
if (each.numel() != 0) {
|
|
empty = false;
|
|
break;
|
|
}
|
|
}
|
|
if (empty) {
|
|
LOG(WARNING) << pg_ig_names[param_id]
|
|
<< " is not found in cur_scope.";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// // TODO(tonyyang-svail): Not sure we need the following
|
|
// // If does not compute gradient of that variable inside rnn,
|
|
// just
|
|
// // continue
|
|
// if (local_var_names.find(inside_grad_name) ==
|
|
// local_var_names.end()) {
|
|
// continue;
|
|
// }
|
|
|
|
// zero gradient variable in step 0
|
|
if (cur_scope_iter == step_scopes->rbegin()) {
|
|
auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
|
|
PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
|
|
PADDLE_ENFORCE(
|
|
var->IsType<framework::LoDTensorArray>() ||
|
|
var->IsType<LoDTensor>(),
|
|
"Currently the type of var only can be LoDTensorArray, "
|
|
"or LoDTensor, but the received var[%s] is %s.",
|
|
inside_grad_name, framework::ToTypeName(var->Type()));
|
|
|
|
if (var->IsType<LoDTensor>()) {
|
|
auto &inside_tensor = var->Get<framework::LoDTensor>();
|
|
framework::AttributeMap attrs;
|
|
attrs["dtype"] = inside_tensor.type();
|
|
attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
|
|
attrs["value"] = 0.0f;
|
|
|
|
auto var_name = pg_ig_names[param_id];
|
|
auto zero_op = framework::OpRegistry::CreateOp(
|
|
"fill_constant", framework::VariableNameMap{},
|
|
{{"Out", {var_name}}}, attrs);
|
|
zero_op->Run(scope, dev_place);
|
|
scope.FindVar(var_name)
|
|
->GetMutable<framework::LoDTensor>()
|
|
->set_lod(inside_tensor.lod());
|
|
}
|
|
}
|
|
auto new_inside_name = cur_scope.Rename(inside_grad_name);
|
|
auto sum_op = framework::OpRegistry::CreateOp(
|
|
"sum", {{"X", {pg_ig_names[param_id], new_inside_name}}},
|
|
{{"Out", {pg_ig_names[param_id]}}},
|
|
framework::AttributeMap{{"use_mkldnn", {false}}});
|
|
sum_op->Run(cur_scope, dev_place);
|
|
cur_scope.Rename(new_inside_name, inside_grad_name);
|
|
}
|
|
dev_ctx.Wait();
|
|
const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
|
|
}
|
|
}
|
|
};
|
|
|
|
class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto *while_grad = new framework::OpDesc();
|
|
while_grad->SetType("while_grad");
|
|
while_grad->SetInput(kX, Input(kX));
|
|
while_grad->SetInput(kOutputs, Output(kOutputs));
|
|
while_grad->SetInput(kStepScopes, Output(kStepScopes));
|
|
|
|
auto *grad_block = this->grad_block_[0];
|
|
auto *fwd_block = grad_block->ForwardBlock();
|
|
auto *parent_block = grad_block->ParentBlock();
|
|
|
|
// Not all of IGs will be generated by inner gradient operators of while op.
|
|
// Ignore IGs that is not generated by the inside block.
|
|
std::unordered_set<std::string> inner_op_outputs;
|
|
for (const auto *op : grad_block->AllOps()) {
|
|
for (auto &oname : op->OutputArgumentNames()) {
|
|
inner_op_outputs.insert(oname);
|
|
}
|
|
}
|
|
auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
|
|
for (auto &each_ig : igs) {
|
|
if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
|
|
VLOG(8) << "Ignore " << each_ig;
|
|
each_ig = framework::kEmptyVarName;
|
|
}
|
|
}
|
|
while_grad->SetOutput(framework::GradVarName(kX), igs);
|
|
|
|
// OG should be re-calculated by step blocks, since many outputs of while op
|
|
// do not need to calculate gradients.
|
|
std::unordered_set<std::string> block_ins;
|
|
block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
|
|
for (auto &p : Input(kX)) {
|
|
block_ins.insert(p);
|
|
}
|
|
for (auto &o : Output(kOutputs)) {
|
|
block_ins.insert(o);
|
|
}
|
|
std::unordered_set<std::string> output_grads;
|
|
for (const auto *op : grad_block->AllOps()) {
|
|
for (auto &input_name : op->InputArgumentNames()) {
|
|
// If the input of Op has been recorded or is generated by the forward
|
|
// block, do not make it as input again.
|
|
|
|
// The input is located in I/O or other op's outputs or the variable is
|
|
// located in grad_block's parents
|
|
if (block_ins.find(input_name) != block_ins.end() ||
|
|
(fwd_block->FindVarRecursive(input_name) != nullptr ||
|
|
parent_block->FindVarRecursive(input_name) != nullptr)) {
|
|
continue;
|
|
}
|
|
|
|
output_grads.insert(input_name);
|
|
}
|
|
for (auto &output_name : op->OutputArgumentNames()) {
|
|
block_ins.insert(output_name);
|
|
}
|
|
}
|
|
|
|
std::vector<std::string> output_grads_list;
|
|
output_grads_list.resize(output_grads.size());
|
|
std::copy(output_grads.begin(), output_grads.end(),
|
|
output_grads_list.begin());
|
|
while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
|
|
|
|
while_grad->SetAttrMap(this->Attrs());
|
|
while_grad->SetBlockAttr(kStepBlock, grad_block);
|
|
// record the original output gradient names, since the gradient name of
|
|
// while operator could be renamed.
|
|
while_grad->SetAttr("original_output_grad", output_grads_list);
|
|
|
|
while_grad->SetAttr(kSkipEagerDeletionVars, std::vector<std::string>());
|
|
|
|
return std::unique_ptr<framework::OpDesc>(while_grad);
|
|
}
|
|
};
|
|
|
|
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext *ctx) const override {
|
|
auto p_names = ctx->Input(kX);
|
|
auto pg_ig_names = ctx->Output(framework::GradVarName(kX));
|
|
|
|
for (size_t i = 0; i < p_names.size(); ++i) {
|
|
if (ctx->HasVar(pg_ig_names[i])) {
|
|
VLOG(5) << "Setting " << pg_ig_names[i] << " following " << p_names[i]
|
|
<< " type: " << ctx->GetType(p_names[i]);
|
|
ctx->SetType(pg_ig_names[i], ctx->GetType(p_names[i]));
|
|
ctx->SetDataType(pg_ig_names[i], ctx->GetDataType(p_names[i]));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class WhileGradOpShapeInference : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
ctx->HasInputs(kX);
|
|
ctx->HasOutputs(framework::GradVarName(kX));
|
|
ctx->HasInputs(kOutputs);
|
|
ctx->HasInputs(framework::GradVarName(kOutputs));
|
|
|
|
auto pg_ig_names = ctx->Outputs(kXGRAD);
|
|
std::vector<framework::InferShapeVarPtr> in_var_ptrs =
|
|
ctx->GetInputVarPtrs(kX);
|
|
std::vector<framework::InferShapeVarPtr> out_var_ptrs =
|
|
ctx->GetOutputVarPtrs(kXGRAD);
|
|
PADDLE_ENFORCE(in_var_ptrs.size() == out_var_ptrs.size());
|
|
|
|
for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
|
|
if (pg_ig_names[i] == framework::kEmptyVarName) {
|
|
continue;
|
|
}
|
|
if (ctx->IsRuntime()) {
|
|
framework::Variable *in_var =
|
|
boost::get<framework::Variable *>(in_var_ptrs[i]);
|
|
framework::Variable *out_var =
|
|
boost::get<framework::Variable *>(out_var_ptrs[i]);
|
|
|
|
auto type = framework::ToVarType(in_var->Type());
|
|
if (type == framework::proto::VarType::LOD_TENSOR) {
|
|
out_var->GetMutable<LoDTensor>()->Resize(
|
|
in_var->Get<framework::LoDTensor>().dims());
|
|
} else if (type == framework::proto::VarType::SELECTED_ROWS) {
|
|
out_var->GetMutable<framework::SelectedRows>()->set_height(
|
|
in_var->Get<framework::SelectedRows>().GetCompleteDims()[0]);
|
|
} else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
|
|
PADDLE_THROW("WhileGradOp doesn't support type %d",
|
|
static_cast<int>(type));
|
|
}
|
|
} else {
|
|
framework::VarDesc *in_var =
|
|
boost::get<framework::VarDesc *>(in_var_ptrs[i]);
|
|
boost::get<framework::VarDesc *>(out_var_ptrs[i])
|
|
->SetShape(in_var->GetShape());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OPERATOR(while, paddle::operators::WhileOp,
|
|
paddle::operators::WhileOpMaker,
|
|
paddle::operators::WhileGradOpDescMaker);
|
|
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
|
|
paddle::operators::WhileGradOpShapeInference,
|
|
paddle::operators::WhileGradOpVarTypeInference);
|