You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
399 lines
13 KiB
399 lines
13 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/reader/ctr_reader.h"
|
|
|
|
#include <gzstream.h>
|
|
|
|
#include <cstdlib>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
#include <algorithm>
|
|
#include <random>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace reader {
|
|
|
|
static inline void string_split(const std::string& s, const char delimiter,
|
|
std::vector<std::string>* output) {
|
|
if (s.empty()) return;
|
|
|
|
size_t start = 0;
|
|
size_t end = s.find(delimiter);
|
|
while (end != std::string::npos) {
|
|
if (end > start) output->emplace_back(s.substr(start, end - start));
|
|
start = end + 1;
|
|
end = s.find(delimiter, start);
|
|
}
|
|
auto term = s.substr(start);
|
|
if (!term.empty()) output->emplace_back(term);
|
|
}
|
|
|
|
static inline void parse_line(
|
|
const std::string& line,
|
|
const std::unordered_map<std::string, size_t>& slot_to_index,
|
|
int64_t* label,
|
|
std::unordered_map<std::string, std::vector<int64_t>>* slot_to_data) {
|
|
std::vector<std::string> ret;
|
|
string_split(line, ' ', &ret);
|
|
*label = std::stoi(ret[0]) > 0;
|
|
|
|
for (size_t i = 1; i < ret.size(); ++i) {
|
|
const std::string& item = ret[i];
|
|
std::vector<std::string> feasign_and_slot;
|
|
string_split(item, ':', &feasign_and_slot);
|
|
if (feasign_and_slot.size() == 2 &&
|
|
slot_to_index.find(feasign_and_slot[1]) != slot_to_index.end()) {
|
|
int64_t feasign = std::strtoll(feasign_and_slot[0].c_str(), NULL, 10);
|
|
(*slot_to_data)[feasign_and_slot[1]].push_back(feasign);
|
|
}
|
|
}
|
|
|
|
// NOTE:: if the slot has no value, then fill [0] as it's data.
|
|
for (auto& item : slot_to_index) {
|
|
if (slot_to_data->find(item.first) == slot_to_data->end()) {
|
|
(*slot_to_data)[item.first].push_back(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// label slot1:fea_sign slot2:fea_sign slot1:fea_sign
|
|
static inline void parse_svm_line(const std::string& line) {}
|
|
|
|
class Reader {
|
|
public:
|
|
virtual ~Reader() {}
|
|
virtual bool HasNext() = 0;
|
|
virtual void NextLine(std::string* line) = 0;
|
|
};
|
|
|
|
class GzipReader : public Reader {
|
|
public:
|
|
explicit GzipReader(const std::string& file_name)
|
|
: gzstream_(file_name.c_str()) {}
|
|
|
|
~GzipReader() {}
|
|
|
|
bool HasNext() override { return gzstream_.peek() != EOF; }
|
|
|
|
void NextLine(std::string* line) override { std::getline(gzstream_, *line); }
|
|
|
|
private:
|
|
igzstream gzstream_;
|
|
};
|
|
|
|
class PlainFileReader : public Reader {
|
|
public:
|
|
explicit PlainFileReader(const std::string& file_name)
|
|
: stream_(file_name.c_str()) {}
|
|
|
|
~PlainFileReader() {}
|
|
|
|
bool HasNext() override { return stream_.peek() != EOF; }
|
|
|
|
void NextLine(std::string* line) override { std::getline(stream_, *line); }
|
|
|
|
private:
|
|
std::ifstream stream_;
|
|
};
|
|
|
|
template <typename SingleFileReader>
|
|
class MultiFileReader : public Reader {
|
|
public:
|
|
explicit MultiFileReader(const std::vector<std::string>& file_list) {
|
|
for (auto& file : file_list) {
|
|
readers_.emplace_back(std::make_shared<SingleFileReader>(file));
|
|
}
|
|
}
|
|
|
|
bool HasNext() override {
|
|
if (current_reader_index_ >= readers_.size()) {
|
|
return false;
|
|
}
|
|
if (!readers_[current_reader_index_]->HasNext()) {
|
|
current_reader_index_++;
|
|
return HasNext();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void NextLine(std::string* line) override {
|
|
readers_[current_reader_index_]->NextLine(line);
|
|
}
|
|
|
|
private:
|
|
std::vector<std::shared_ptr<SingleFileReader>> readers_;
|
|
size_t current_reader_index_ = 0;
|
|
};
|
|
|
|
void MonitorThread(std::vector<ReaderThreadStatus>* thread_status,
|
|
std::shared_ptr<LoDTensorBlockingQueue> queue) {
|
|
VLOG(3) << "monitor thread in";
|
|
bool reader_thread_is_running = true;
|
|
while (reader_thread_is_running) {
|
|
VLOG(3) << "reader_thread_is_running";
|
|
reader_thread_is_running = false;
|
|
for (size_t i = 0; i < (*thread_status).size(); ++i) {
|
|
if ((*thread_status)[i] == Running) {
|
|
VLOG(3) << "reader is running!";
|
|
reader_thread_is_running = true;
|
|
}
|
|
}
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
|
|
}
|
|
VLOG(3) << "all reader thread is stopped, close the queue";
|
|
queue->Close();
|
|
VLOG(3) << "monitor thread exited";
|
|
}
|
|
|
|
void ReadSvmData(const DataDesc& data_desc, std::shared_ptr<Reader> reader,
|
|
std::shared_ptr<LoDTensorBlockingQueue> queue) {
|
|
std::unordered_map<std::string, size_t> slot_to_index;
|
|
for (size_t i = 0; i < data_desc.sparse_slot_ids_.size(); ++i) {
|
|
slot_to_index[data_desc.sparse_slot_ids_[i]] = i;
|
|
}
|
|
|
|
std::string line;
|
|
|
|
std::vector<std::unordered_map<std::string, std::vector<int64_t>>> batch_data;
|
|
std::vector<int64_t> batch_label;
|
|
|
|
while (reader->HasNext()) {
|
|
batch_data.clear();
|
|
batch_data.reserve(data_desc.batch_size_);
|
|
|
|
batch_label.clear();
|
|
batch_label.reserve(data_desc.batch_size_);
|
|
|
|
// read batch_size data
|
|
for (int i = 0; i < data_desc.batch_size_; ++i) {
|
|
if (reader->HasNext()) {
|
|
reader->NextLine(&line);
|
|
std::unordered_map<std::string, std::vector<int64_t>> slot_to_data;
|
|
int64_t label;
|
|
parse_line(line, slot_to_index, &label, &slot_to_data);
|
|
batch_data.push_back(slot_to_data);
|
|
batch_label.push_back(label);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::vector<framework::LoDTensor> lod_datas;
|
|
|
|
// first insert tensor for each sparse_slots
|
|
for (auto& slot : data_desc.sparse_slot_ids_) {
|
|
std::vector<size_t> lod_data{0};
|
|
std::vector<int64_t> batch_feasign;
|
|
|
|
for (size_t i = 0; i < batch_data.size(); ++i) {
|
|
auto& feasign = batch_data[i][slot];
|
|
lod_data.push_back(lod_data.back() + feasign.size());
|
|
batch_feasign.insert(batch_feasign.end(), feasign.begin(),
|
|
feasign.end());
|
|
}
|
|
|
|
framework::LoDTensor lod_tensor;
|
|
framework::LoD lod{lod_data};
|
|
lod_tensor.set_lod(lod);
|
|
int64_t* tensor_data = lod_tensor.mutable_data<int64_t>(
|
|
framework::make_ddim({static_cast<int64_t>(batch_feasign.size()), 1}),
|
|
platform::CPUPlace());
|
|
memcpy(tensor_data, batch_feasign.data(),
|
|
batch_feasign.size() * sizeof(int64_t));
|
|
lod_datas.push_back(lod_tensor);
|
|
}
|
|
|
|
// insert label tensor
|
|
framework::LoDTensor label_tensor;
|
|
auto* label_tensor_data = label_tensor.mutable_data<int64_t>(
|
|
framework::make_ddim({static_cast<int64_t>(batch_label.size()), 1}),
|
|
platform::CPUPlace());
|
|
memcpy(label_tensor_data, batch_label.data(),
|
|
batch_label.size() * sizeof(int64_t));
|
|
lod_datas.push_back(label_tensor);
|
|
|
|
queue->Push(lod_datas);
|
|
VLOG(4) << "push one data, queue_size=" << queue->Size();
|
|
}
|
|
}
|
|
|
|
// label dense_fea,dense_fea sparse_fea,sparse_fea
|
|
static inline void parse_csv_line(
|
|
const std::string& line, const DataDesc& data_desc, int64_t* label,
|
|
std::vector<std::vector<float>>* dense_datas,
|
|
std::vector<std::vector<int64_t>>* sparse_datas) {
|
|
std::vector<std::string> ret;
|
|
string_split(line, ' ', &ret);
|
|
*label = std::stol(ret[0]);
|
|
dense_datas->resize(data_desc.dense_slot_index_.size());
|
|
for (size_t i = 0; i < data_desc.dense_slot_index_.size(); ++i) {
|
|
int slot_idx = data_desc.dense_slot_index_[i];
|
|
auto& slot_data = ret[slot_idx];
|
|
std::vector<std::string> data_in_slot_str;
|
|
string_split(slot_data, ',', &data_in_slot_str);
|
|
std::vector<float> data_in_slot;
|
|
for (auto& data_str : data_in_slot_str) {
|
|
(*dense_datas)[i].push_back(std::stof(data_str));
|
|
}
|
|
}
|
|
sparse_datas->resize(data_desc.sparse_slot_index_.size());
|
|
for (size_t i = 0; i < data_desc.sparse_slot_index_.size(); ++i) {
|
|
int slot_idx = data_desc.sparse_slot_index_[i];
|
|
auto& slot_data = ret[slot_idx];
|
|
std::vector<std::string> data_in_slot_str;
|
|
string_split(slot_data, ',', &data_in_slot_str);
|
|
std::vector<int64_t> data_in_slot;
|
|
for (auto& data_str : data_in_slot_str) {
|
|
auto id = std::stol(data_str);
|
|
(*sparse_datas)[i].push_back(id);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReadCsvData(const DataDesc& data_desc, std::shared_ptr<Reader> reader,
|
|
std::shared_ptr<LoDTensorBlockingQueue> queue) {
|
|
std::string line;
|
|
while (reader->HasNext()) {
|
|
std::vector<int64_t> batch_label;
|
|
batch_label.reserve(data_desc.batch_size_);
|
|
|
|
std::vector<std::vector<std::vector<float>>> batch_dense_data;
|
|
batch_dense_data.reserve(data_desc.batch_size_);
|
|
|
|
std::vector<std::vector<std::vector<int64_t>>> batch_sparse_data;
|
|
batch_sparse_data.reserve(data_desc.batch_size_);
|
|
|
|
// read batch_size data
|
|
for (int i = 0; i < data_desc.batch_size_; ++i) {
|
|
if (reader->HasNext()) {
|
|
reader->NextLine(&line);
|
|
int64_t label;
|
|
std::vector<std::vector<float>> dense_datas;
|
|
std::vector<std::vector<int64_t>> sparse_datas;
|
|
parse_csv_line(line, data_desc, &label, &dense_datas, &sparse_datas);
|
|
batch_label.push_back(label);
|
|
if (!batch_dense_data.empty()) {
|
|
PADDLE_ENFORCE_EQ(batch_dense_data[0].size(), dense_datas.size(),
|
|
"dense data should have the same shape");
|
|
}
|
|
batch_dense_data.push_back(dense_datas);
|
|
batch_sparse_data.push_back(sparse_datas);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// the order of output data is label, dense_datas, sparse_datas
|
|
std::vector<framework::LoDTensor> lod_datas;
|
|
|
|
// insert label tensor
|
|
framework::LoDTensor label_tensor;
|
|
auto* label_tensor_data = label_tensor.mutable_data<int64_t>(
|
|
framework::make_ddim({static_cast<int64_t>(batch_label.size()), 1}),
|
|
platform::CPUPlace());
|
|
memcpy(label_tensor_data, batch_label.data(),
|
|
batch_label.size() * sizeof(int64_t));
|
|
lod_datas.push_back(label_tensor);
|
|
|
|
// insert tensor for each dense_slots
|
|
for (size_t i = 0; i < data_desc.dense_slot_index_.size(); ++i) {
|
|
framework::LoDTensor lod_tensor;
|
|
size_t width = batch_dense_data[0][i].size();
|
|
auto* tensor_data = lod_tensor.mutable_data<float>(
|
|
framework::make_ddim(
|
|
{static_cast<int64_t>(batch_dense_data.size()), // batch_size
|
|
static_cast<int64_t>(width)}),
|
|
platform::CPUPlace());
|
|
|
|
for (size_t j = 0; j < batch_dense_data.size(); ++j) {
|
|
auto& dense_data_row = batch_dense_data[j][i];
|
|
memcpy(tensor_data + j * width, dense_data_row.data(),
|
|
width * sizeof(float));
|
|
}
|
|
|
|
lod_datas.push_back(lod_tensor);
|
|
}
|
|
|
|
// insert tensor for each sparse_slots
|
|
for (size_t i = 0; i < data_desc.sparse_slot_index_.size(); ++i) {
|
|
std::vector<size_t> lod_data{0};
|
|
std::vector<int64_t> batch_feasign;
|
|
|
|
for (size_t row_idx = 0; row_idx < batch_sparse_data.size(); ++row_idx) {
|
|
auto& sparse_ids = batch_sparse_data[row_idx][i];
|
|
lod_data.push_back(lod_data.back() + sparse_ids.size());
|
|
batch_feasign.insert(batch_feasign.end(), sparse_ids.begin(),
|
|
sparse_ids.end());
|
|
}
|
|
|
|
framework::LoDTensor lod_tensor;
|
|
framework::LoD lod{lod_data};
|
|
lod_tensor.set_lod(lod);
|
|
int64_t* tensor_data = lod_tensor.mutable_data<int64_t>(
|
|
framework::make_ddim({static_cast<int64_t>(batch_feasign.size()), 1}),
|
|
platform::CPUPlace());
|
|
memcpy(tensor_data, batch_feasign.data(),
|
|
batch_feasign.size() * sizeof(int64_t));
|
|
lod_datas.push_back(lod_tensor);
|
|
}
|
|
|
|
queue->Push(lod_datas);
|
|
VLOG(4) << "push one data, queue_size=" << queue->Size();
|
|
}
|
|
}
|
|
|
|
void ReadThread(const std::vector<std::string>& file_list,
|
|
const DataDesc& data_desc, int thread_id,
|
|
std::vector<ReaderThreadStatus>* thread_status,
|
|
std::shared_ptr<LoDTensorBlockingQueue> queue) {
|
|
VLOG(3) << "[" << thread_id << "]"
|
|
<< " reader thread start! thread_id = " << thread_id;
|
|
for (auto& file : file_list) {
|
|
VLOG(3) << "[" << thread_id << "]"
|
|
<< " file " << file;
|
|
}
|
|
(*thread_status)[thread_id] = Running;
|
|
VLOG(3) << "set status to running";
|
|
|
|
std::shared_ptr<Reader> reader;
|
|
if (data_desc.file_type_ == "gzip") {
|
|
reader.reset(new MultiFileReader<GzipReader>(file_list));
|
|
} else if (data_desc.file_type_ == "plain") {
|
|
reader.reset(new MultiFileReader<PlainFileReader>(file_list));
|
|
} else {
|
|
PADDLE_THROW("do not support file format %s", data_desc.file_type_);
|
|
}
|
|
|
|
VLOG(3) << "reader inited";
|
|
|
|
if (data_desc.file_format_ == "svm") {
|
|
ReadSvmData(data_desc, reader, queue);
|
|
} else if (data_desc.file_format_ == "csv") {
|
|
ReadCsvData(data_desc, reader, queue);
|
|
}
|
|
|
|
(*thread_status)[thread_id] = Stopped;
|
|
VLOG(3) << "set status to stopped, thread " << thread_id << " exited";
|
|
}
|
|
|
|
} // namespace reader
|
|
} // namespace operators
|
|
} // namespace paddle
|