You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.8 KiB
140 lines
4.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
struct SequenceSoftmaxFunctor {
|
|
void operator()(
|
|
const DeviceContext &ctx, const LoDTensor &x,
|
|
const framework::Vector<size_t> &ref_lod, /*expand referenced lod*/
|
|
LoDTensor *out);
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
struct SequenceSoftmaxGradFunctor {
|
|
void operator()(const DeviceContext &ctx, const LoDTensor &dout,
|
|
const LoDTensor &out,
|
|
const framework::Vector<size_t> &ref_lod, /*referenced lod*/
|
|
LoDTensor *dx);
|
|
};
|
|
|
|
template <typename T>
|
|
struct SequenceSoftmaxFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext &ctx, const LoDTensor &x,
|
|
const framework::Vector<size_t> &ref_lod, /*referenced lod*/
|
|
LoDTensor *out) {
|
|
size_t hight = ref_lod.size() - 1;
|
|
const T *in_data = x.data<T>();
|
|
T *out_data = out->mutable_data<T>(ctx.GetPlace());
|
|
for (size_t i = 0; i < hight; ++i) {
|
|
size_t span = ref_lod[i + 1] - ref_lod[i];
|
|
T result = 0;
|
|
for (size_t j = 0; j < span; ++j) {
|
|
result += exp(in_data[ref_lod[i] + j]);
|
|
}
|
|
for (size_t j = 0; j < span; ++j) {
|
|
out_data[ref_lod[i] + j] = exp(in_data[ref_lod[i] + j]) / result;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct SequenceSoftmaxGradFunctor<platform::CPUDeviceContext, T> {
|
|
void operator()(const platform::CPUDeviceContext &ctx, const LoDTensor &dout,
|
|
const LoDTensor &out,
|
|
const framework::Vector<size_t> &ref_lod, /*referenced lod*/
|
|
LoDTensor *dx) {
|
|
size_t hight = ref_lod.size() - 1;
|
|
|
|
const T *softmax_grad_data = dout.data<T>();
|
|
const T *softmax = out.data<T>();
|
|
T *dx_data = dx->mutable_data<T>(ctx.GetPlace());
|
|
|
|
for (size_t i = 0; i < hight; ++i) {
|
|
size_t span = ref_lod[i + 1] - ref_lod[i];
|
|
T result = 0;
|
|
for (size_t j = 0; j < span; ++j) {
|
|
result += softmax_grad_data[ref_lod[i] + j] * softmax[ref_lod[i] + j];
|
|
}
|
|
|
|
for (size_t j = 0; j < span; ++j) {
|
|
dx_data[ref_lod[i] + j] = (softmax_grad_data[ref_lod[i] + j] - result) *
|
|
softmax[ref_lod[i] + j];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSoftmaxKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *x = ctx.Input<LoDTensor>("X");
|
|
auto *out = ctx.Output<LoDTensor>("Out");
|
|
|
|
auto lod = x->lod();
|
|
auto dims = x->dims();
|
|
|
|
const size_t level = lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(dims[0], static_cast<int64_t>(lod[level].back()),
|
|
"The first dimension of Input(X) should be equal to the "
|
|
"sum of all sequences' lengths.");
|
|
PADDLE_ENFORCE_EQ(dims[0], x->numel(),
|
|
"The width of each timestep in Input(X) of "
|
|
"SequenceSoftmaxOp should be 1.");
|
|
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
SequenceSoftmaxFunctor<DeviceContext, T> seq_softmax_functor;
|
|
seq_softmax_functor(ctx.template device_context<DeviceContext>(), *x,
|
|
lod[level], out);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SequenceSoftmaxGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *out = ctx.Input<LoDTensor>("Out");
|
|
auto *out_grad = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto *x = ctx.Input<LoDTensor>("X");
|
|
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
|
if (!x_grad) {
|
|
return;
|
|
}
|
|
|
|
x_grad->set_lod(x->lod());
|
|
auto lod = x->lod();
|
|
const size_t level = lod.size() - 1;
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
SequenceSoftmaxGradFunctor<DeviceContext, T> seq_softmax_grad_functor;
|
|
seq_softmax_grad_functor(ctx.template device_context<DeviceContext>(),
|
|
*out_grad, *out, lod[level], x_grad);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|