You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dataloader/sampler.py

322 lines
11 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import numpy as np
from .. import core
__all__ = [
"Sampler", "SequenceSampler", "RandomSampler", "WeightedRandomSampler"
]
class Sampler(object):
"""
An abstract class to encapsulate methods and behaviors of samplers.
All sampler used by :code:`paddle.io.BatchSampler` should be a subclass
of :code:`paddle.io.Sampler`, BatchSampler subclasses should
implement following methods:
:code:`__iter__`: return sample index iterably, which iterate over indices
of dataset elements
:code:`__len__`: the number of sample in :attr:`data_source`
Args:
data_source(Dataset, optional): this could be an instance of
:code:`paddle.io.Dataset` other Python object which
implemented :code:`__len__` for Sampler to get indices
as the range of :attr:`dataset` length. Default None.
Returns:
Sampler: an iterable object for sample indices iterating
Examples:
.. code-block:: python
from paddle.io import Dataset, Sampler
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class MySampler(Sampler):
def __init__(self, data_source):
self.data_source = data_source
def __iter__(self):
return iter(range(len(self.data_source)))
def __len__(self):
return len(self.data_source)
sampler = MySampler(data_source=RandomDataset(100))
for index in sampler:
print(index)
see `paddle.io.BatchSampler`
see `paddle.io.DataLoader`
"""
def __init__(self, data_source=None):
self.data_source = data_source
def __iter__(self):
raise NotImplementedError
# Not define __len__ method in this base class here for __len__
# is not needed in same sence, e.g. paddle.io.IterableDataset
class SequenceSampler(Sampler):
"""
Iterate samples sequentially, yield :code:`0, 1, 2, ..., len(data_source) -1`
generally,
Args:
data_source(Dataset): dataset to sample, this could be an
instance of :code:`paddle.io.Dataset` other Python
object which implemented :code:`__len__`.
Returns:
Sampler: a Sampler yield sample index sequentially
Examples:
.. code-block:: python
from paddle.io import Dataset, SequenceSampler
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
sampler = SequenceSampler(data_source=RandomDataset(100))
for index in sampler:
print(index)
see `paddle.io.Sampler`
"""
def __init__(self, data_source):
self.data_source = data_source
def __iter__(self):
return iter(range(len(self.data_source)))
def __len__(self):
return len(self.data_source)
class RandomSampler(Sampler):
"""
Iterate samples randomly, yield shuffled indices, if :attr:`replacement=False`,
yield shuffled indices of the whole data souce, if :attr:`replacement=True`,
:attr:`num_samples` can set to specify the sample number to draw.
Args:
data_source(Dataset): dataset to sample, this could be an
instance of :code:`paddle.io.Dataset` other Python
object which implemented :code:`__len__`.
replacement(bool): If False, sample the whole dataset, If False,
set :attr:`num_samples` for how many sample to draw. Default False.
num_samples(int): set sample number to draw if :attr:`replacement`
is True. Default None.
generator(Generator): specify a generator to sample the data source. Default None
Returns:
Sampler: a Sampler yield sample index randomly
Examples:
.. code-block:: python
from paddle.io import Dataset, RandomSampler
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
sampler = RandomSampler(data_source=RandomDataset(100))
for index in sampler:
print(index)
see `paddle.io.Sampler`
"""
def __init__(self,
data_source,
replacement=False,
num_samples=None,
generator=None):
self.data_source = data_source
self.replacement = replacement
self._num_samples = num_samples
self.generator = generator
if not isinstance(self.replacement, bool):
raise TypeError("expect boolean value for replacement, but got "
"replacement={}".format(self.replacement))
if self._num_samples is not None and not replacement:
raise ValueError(
"num_samples should not be specified while replacement is False")
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
raise ValueError("num_samples should be a positive integer, "
"but got num_samples={}".format(self.num_samples))
@property
def num_samples(self):
if self._num_samples is None:
return len(self.data_source)
return self._num_samples
def __iter__(self):
n = len(self.data_source)
if self.generator:
for i in range(self.num_samples):
try:
index = next(self.generator)
except StopIteration:
return
yield index
else:
if self.replacement:
for index in np.random.choice(
np.arange(n), self.num_samples, replace=True).tolist():
yield index
else:
for index in np.random.choice(
np.arange(n), n, replace=False).tolist():
yield index
def __len__(self):
return self.num_samples
def _weighted_sample(weights, num_samples, replacement=True):
if isinstance(weights, core.LoDTensor):
weights = weights.numpy()
if isinstance(weights, (list, tuple)):
weights = np.array(weights)
assert isinstance(weights, np.ndarray), \
"weights should be paddle.Tensor, numpy.ndarray, list or tuple"
assert len(weights.shape) <= 2, \
"weights should be a 1-D or 2-D array"
weights = weights.reshape((-1, weights.shape[-1]))
assert np.all(weights >= 0.), \
"weights should be positive value"
assert not np.any(weights == np.inf), \
"weights shoule not be INF"
assert not np.any(weights == np.nan), \
"weights shoule not be NaN"
non_zeros = np.sum(weights > 0., axis=1)
assert np.all(non_zeros > 0), \
"weights should have positive values"
if not replacement:
assert np.all(non_zeros >= num_samples), \
"weights positive value number should not " \
"less than num_samples when replacement=False"
weights = weights / weights.sum(axis=1)
rets = []
for i in range(weights.shape[0]):
ret = np.random.choice(weights.shape[1], num_samples, replacement,
weights[i])
rets.append(ret)
return np.array(rets)
class WeightedRandomSampler(Sampler):
"""
Random sample with given weights (probabilities), sampe index will be in range
[0, len(weights) - 1], if :attr:`replacement` is True, index can be sampled
multiple times.
Args:
weights(numpy.ndarray|paddle.Tensor|list|tuple): sequence of weights,
should be numpy array, paddle.Tensor, list or tuple
num_samples(int): set sample number to draw from sampler.
replacement(bool): Whether to draw sample with replacements, default True
Returns:
Sampler: a Sampler yield sample index randomly by given weights
Examples:
.. code-block:: python
from paddle.io import WeightedRandomSampler
sampler = WeightedRandomSampler(weights=[0.1, 0.3, 0.5, 0.7, 0.2],
num_samples=5,
replacement=True)
for index in sampler:
print(index)
"""
def __init__(self, weights, num_samples, replacement=True):
if not isinstance(num_samples, int) or num_samples <= 0:
raise ValueError("num_samples should be a positive integer")
if not isinstance(replacement, bool):
raise ValueError("replacement should be a boolean value")
self.weights = weights
self.num_samples = num_samples
self.replacement = replacement
def __iter__(self):
idxs = _weighted_sample(self.weights, self.num_samples,
self.replacement)
return iter(idxs.reshape((-1)).tolist())
def __len__(self):
mul = np.prod(self.weights.shape) // self.weights.shape[-1]
return self.num_samples * mul