You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/pyDataProvider/trainer.conf

76 lines
2.7 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################### Data Configuration ###################
TrainData(PyData(type="py",
files = "./gserver/tests/pyDataProvider/pyDataProviderList",
load_data_module="pyDataProvider",
load_data_object="SimpleDataProvider"))
################################### Algorithm Configuration #############
Settings(
learning_rate_decay_a = 1e-05,
learning_rate_decay_b = 1e-06,
learning_rate = 0.001,
batch_size = 1,
algorithm = 'sgd',
num_batches_per_send_parameter = 1,
num_batches_per_get_parameter = 1,
)
################################### Network Configuration ###############
Layer(type = "data", name = "input1", size = 3)
Layer(type = "data", name = "input2", size = 7)
Layer(inputs = [Input("input1",
decay_rate = 0.12,
initial_std = 0.02,
parameter_name = "_layer1_1.w"),
Input("input2",
decay_rate = 0.12,
initial_std = 0.02,
parameter_name = "_layer1_2.w"),
],
name = "layer1",
bias = Bias(parameter_name = "_layer1.bias"),
active_type = "sigmoid",
type = "fc",
size = 100)
Layer(inputs = [Input("layer1",
decay_rate = 0.06,
initial_std = 0.02,
parameter_name = "_layer2.w")],
name = "layer2",
bias = Bias(parameter_name = "_layer2.bias"),
active_type = "sigmoid",
type = "fc",
size = 100)
Layer(inputs = [Input("layer2",
decay_rate = 0.02,
initial_std = 0.02,
parameter_name = "_layer_output.w")],
name = "output",
bias = Bias(parameter_name = "_layer_output.bias"),
active_type = "softmax",
type = "fc",
size = 10)
Layer(type = "data", name = "label", size = 1)
Layer(inputs = [Input("output"), Input("label")],
type = "multi-class-cross-entropy",
name = "cost")
Inputs("input1", "input2", "label")
Outputs("cost")