You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
13 KiB
314 lines
13 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/conv_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using paddle::framework::Tensor;
|
|
using paddle::platform::MKLDNNDeviceContext;
|
|
using paddle::platform::MKLDNNMemDesc;
|
|
|
|
using mkldnn::memory; // Note: paddle has also "memory" namespace
|
|
using mkldnn::primitive;
|
|
using mkldnn::convolution_forward;
|
|
using mkldnn::convolution_backward_weights;
|
|
using mkldnn::convolution_backward_data;
|
|
using mkldnn::convolution_direct;
|
|
using mkldnn::prop_kind;
|
|
using mkldnn::padding_kind;
|
|
using mkldnn::stream;
|
|
|
|
namespace {
|
|
std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
|
|
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
|
|
const memory::desc& dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const mkldnn::engine& engine);
|
|
|
|
convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
|
|
const memory::desc& src, const memory::desc& diff_weights,
|
|
const memory::desc& diff_dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const convolution_forward::primitive_desc& conv_pd,
|
|
const mkldnn::engine& engine);
|
|
|
|
convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
|
|
const memory::desc& diff_src, const memory::desc& weights,
|
|
const memory::desc& diff_dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const convolution_forward::primitive_desc& conv_pd,
|
|
const mkldnn::engine& engine);
|
|
} // anonymous namespace
|
|
|
|
template <typename T>
|
|
class ConvOpMkldnnKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto* filter = ctx.Input<Tensor>("Filter");
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
// This name will be used as key when saving info into device context
|
|
const std::string key = ctx.op().Output("Output");
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
|
|
int groups = ctx.Attr<int>("groups");
|
|
|
|
// TODO(pzelazko-intel) add support for group convolution and dilation
|
|
PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
|
|
PADDLE_ENFORCE(
|
|
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
|
|
"dilation in convolution is not implemented yet");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
// allocate memory for output
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
PADDLE_ENFORCE(input->dims().size() == 4,
|
|
"Input must be with 4 dimensions, i.e. NCHW");
|
|
PADDLE_ENFORCE(filter->dims().size() == 4,
|
|
"Filter must be with 4 dimensions, i.e. OIHW");
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> weights_tz =
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
// TODO(pzelazko-intel): support more formats
|
|
// memory descriptors for convolution src/weight/dst
|
|
auto conv_src_md =
|
|
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
|
|
auto conv_weights_md =
|
|
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
|
|
auto conv_dst_md =
|
|
MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);
|
|
|
|
// create memory primitives
|
|
auto conv_src_memory =
|
|
memory({conv_src_md, mkldnn_engine}, (void*)input_data);
|
|
auto conv_weights_memory =
|
|
memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);
|
|
auto conv_dst_memory = memory({conv_dst_md, mkldnn_engine}, output_data);
|
|
|
|
std::unique_ptr<convolution_forward::primitive_desc> conv_pd =
|
|
ConvFwdPrimitiveDesc(conv_src_md, conv_weights_md, conv_dst_md, strides,
|
|
paddings, mkldnn_engine);
|
|
|
|
// save p_conv_pd into dev_ctx to be referred in backward path
|
|
auto p_conv_pd = conv_pd.get();
|
|
std::shared_ptr<void> conv_pd_value = std::move(conv_pd);
|
|
dev_ctx.SetBlob(key_conv_pd, conv_pd_value);
|
|
|
|
// create convolution op primitive
|
|
auto conv_prim = convolution_forward(*p_conv_pd, conv_src_memory,
|
|
conv_weights_memory, conv_dst_memory);
|
|
|
|
// push op to stream and wait MKLDNN until it's executed
|
|
std::vector<primitive> pipeline{conv_prim};
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ConvGradOpMkldnnKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
const Tensor* input = ctx.Input<Tensor>("Input");
|
|
const Tensor* filter = ctx.Input<Tensor>("Filter");
|
|
const Tensor* output = ctx.Input<Tensor>("Output");
|
|
const Tensor* output_grad =
|
|
ctx.Input<Tensor>(framework::GradVarName("Output"));
|
|
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
|
|
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
|
|
|
|
if (!input_grad && !filter_grad) return;
|
|
|
|
// Get an unique name from "argument" name of "Output" variable
|
|
// This name will be used as key when saving info into device context
|
|
const std::string key = ctx.op().Input("Output");
|
|
const std::string key_conv_pd = key + "@conv_pd";
|
|
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
const T* input_data = input->data<T>();
|
|
const T* filter_data = filter->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data = nullptr;
|
|
T* filter_grad_data = nullptr;
|
|
|
|
// allocate memory for gradient of input/filter
|
|
if (input_grad) {
|
|
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
if (filter_grad) {
|
|
filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
|
|
}
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> weights_tz =
|
|
paddle::framework::vectorize2int(filter->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
// TODO(pzelazko-intel): support more formats
|
|
auto conv_src_md =
|
|
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
|
|
auto conv_diff_src_md =
|
|
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
|
|
auto conv_weights_md =
|
|
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
|
|
auto conv_diff_weights_md =
|
|
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
|
|
auto conv_diff_dst_md =
|
|
MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);
|
|
|
|
// create memory
|
|
auto conv_diff_dst_memory =
|
|
memory({conv_diff_weights_md, mkldnn_engine}, (void*)output_grad_data);
|
|
// Retrieve conv_pd from device context
|
|
std::shared_ptr<void> conv_pd;
|
|
convolution_forward::primitive_desc* p_conv_pd;
|
|
|
|
conv_pd = dev_ctx.GetBlob(key_conv_pd);
|
|
PADDLE_ENFORCE(conv_pd != nullptr,
|
|
"Fail to find conv_pd in device context");
|
|
p_conv_pd =
|
|
static_cast<convolution_forward::primitive_desc*>(conv_pd.get());
|
|
|
|
// create backward conv primitive for weights
|
|
if (filter_grad) {
|
|
// create primitive descriptor
|
|
convolution_backward_weights::primitive_desc conv_bwd_weights_pd =
|
|
ConvBwdWeightsPrimitiveDesc(conv_src_md, conv_diff_weights_md,
|
|
conv_diff_dst_md, strides, paddings,
|
|
*p_conv_pd, mkldnn_engine);
|
|
|
|
// create memory
|
|
auto conv_diff_weights_memory = memory(
|
|
{conv_diff_weights_md, mkldnn_engine}, (void*)filter_grad_data);
|
|
auto conv_src_memory =
|
|
memory({conv_src_md, mkldnn_engine}, (void*)input_data);
|
|
|
|
// create backward conv primitive for weights
|
|
auto conv_bwd_weights_prim = convolution_backward_weights(
|
|
conv_bwd_weights_pd, conv_src_memory, conv_diff_dst_memory,
|
|
conv_diff_weights_memory);
|
|
|
|
// push primitive and execute it
|
|
std::vector<primitive> pipeline{conv_bwd_weights_prim};
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
|
|
if (input_grad) {
|
|
// create primitive descriptor
|
|
convolution_backward_data::primitive_desc conv_bwd_data_pd =
|
|
ConvBwdDataPrimitiveDesc(conv_diff_src_md, conv_weights_md,
|
|
conv_diff_dst_md, strides, paddings,
|
|
*p_conv_pd, mkldnn_engine);
|
|
|
|
// create memory
|
|
auto conv_diff_src_memory =
|
|
memory({conv_diff_src_md, mkldnn_engine}, (void*)input_grad_data);
|
|
auto conv_weights_memory =
|
|
memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);
|
|
|
|
// create backward conv primitive for data
|
|
auto conv_bwd_data_prim =
|
|
convolution_backward_data(conv_bwd_data_pd, conv_diff_dst_memory,
|
|
conv_weights_memory, conv_diff_src_memory);
|
|
|
|
// push primitive and execute it
|
|
std::vector<primitive> pipeline{conv_bwd_data_prim};
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
}
|
|
} // Compute()
|
|
};
|
|
|
|
namespace {
|
|
std::unique_ptr<convolution_forward::primitive_desc> ConvFwdPrimitiveDesc(
|
|
const memory::desc& src, const memory::desc& weights,
|
|
const memory::desc& dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings, const mkldnn::engine& engine) {
|
|
mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
|
|
mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};
|
|
|
|
auto conv_desc = mkldnn::convolution_forward::desc(
|
|
mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights, dst,
|
|
stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
|
|
|
|
auto p_conv_pd = new convolution_forward::primitive_desc(conv_desc, engine);
|
|
|
|
return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
|
|
p_conv_pd);
|
|
}
|
|
|
|
convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
|
|
const memory::desc& src, const memory::desc& diff_weights,
|
|
const memory::desc& diff_dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const convolution_forward::primitive_desc& conv_pd,
|
|
const mkldnn::engine& engine) {
|
|
auto conv_bwd_weights_desc = convolution_backward_weights::desc(
|
|
convolution_direct, src, diff_weights, diff_dst, strides, paddings,
|
|
paddings, padding_kind::zero);
|
|
return convolution_backward_weights::primitive_desc(conv_bwd_weights_desc,
|
|
engine, conv_pd);
|
|
}
|
|
|
|
convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
|
|
const memory::desc& diff_src, const memory::desc& weights,
|
|
const memory::desc& diff_dst, const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const convolution_forward::primitive_desc& conv_pd,
|
|
const mkldnn::engine& engine) {
|
|
auto conv_bwd_data_desc = convolution_backward_data::desc(
|
|
convolution_direct, diff_src, weights, diff_dst, strides, paddings,
|
|
paddings, padding_kind::zero);
|
|
return convolution_backward_data::primitive_desc(conv_bwd_data_desc, engine,
|
|
conv_pd);
|
|
}
|
|
} // anonymous namespace
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvOpMkldnnKernel<float>);
|
|
|
|
REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ConvGradOpMkldnnKernel<float>);
|