You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.4 KiB
80 lines
2.4 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file contains demo of mobilenet for tensorrt.
|
|
*/
|
|
|
|
#include <gflags/gflags.h>
|
|
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
|
|
#include "utils.h" // NOLINT
|
|
|
|
DECLARE_double(fraction_of_gpu_memory_to_use);
|
|
DEFINE_string(modeldir, "", "Directory of the inference model.");
|
|
DEFINE_string(refer, "", "path to reference result for comparison.");
|
|
DEFINE_string(data, "",
|
|
"path of data; each line is a record, format is "
|
|
"'<space split floats as data>\t<space split ints as shape'");
|
|
|
|
namespace paddle {
|
|
namespace demo {
|
|
|
|
/*
|
|
* Use the tensorrt fluid engine to inference the demo.
|
|
*/
|
|
void Main() {
|
|
std::unique_ptr<PaddlePredictor> predictor;
|
|
paddle::AnalysisConfig config;
|
|
config.EnableUseGpu(100, 0);
|
|
config.SetModel(FLAGS_modeldir + "/__model__",
|
|
FLAGS_modeldir + "/__params__");
|
|
config.EnableTensorRtEngine();
|
|
predictor = CreatePaddlePredictor(config);
|
|
|
|
VLOG(3) << "begin to process data";
|
|
// Just a single batch of data.
|
|
std::string line;
|
|
std::ifstream file(FLAGS_data);
|
|
std::getline(file, line);
|
|
auto record = ProcessALine(line);
|
|
file.close();
|
|
|
|
// Inference.
|
|
PaddleTensor input;
|
|
input.shape = record.shape;
|
|
input.data =
|
|
PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
|
|
input.dtype = PaddleDType::FLOAT32;
|
|
|
|
VLOG(3) << "run executor";
|
|
std::vector<PaddleTensor> output;
|
|
predictor->Run({input}, &output, 1);
|
|
|
|
VLOG(3) << "output.size " << output.size();
|
|
auto& tensor = output.front();
|
|
VLOG(3) << "output: " << SummaryTensor(tensor);
|
|
|
|
// compare with reference result
|
|
CheckOutput(FLAGS_refer, tensor);
|
|
}
|
|
|
|
} // namespace demo
|
|
} // namespace paddle
|
|
|
|
int main(int argc, char** argv) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
paddle::demo::Main();
|
|
return 0;
|
|
}
|