You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
152 lines
5.3 KiB
152 lines
5.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "TensorShape.h"
|
|
#include "TensorType.h"
|
|
#include "neon/neon_util.h"
|
|
|
|
namespace paddle {
|
|
|
|
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
|
|
enum ColFormat { kCFO = 0, kOCF = 1 };
|
|
|
|
/*
|
|
* \brief Converts the image data of three dimensions(CHW) into a colData of
|
|
* five dimensions in the Im2ColFunctor calculation,
|
|
* And in the Col2ImFunctor calculation, it is reversed.
|
|
*
|
|
* \param imData Image data.
|
|
* \param imShape The shape of imData,
|
|
* [inputChannels, inputHeight, inputWidth].
|
|
* \param colData Column data.
|
|
* \param colShape The shape of colData.
|
|
*
|
|
* If the template argument Format is kCFO, the shape of colData is:
|
|
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
|
|
* So, it is easy to reshape into a convolution matrix for convolution
|
|
* calculation based on matrix multiplication.
|
|
* The shape of convolution matrix is [height, width], where the height is equal
|
|
* inputChannels * filterHeight * filterWidth, and the width is equal
|
|
* outputHeight * outputWidth.
|
|
*
|
|
* Reshape:
|
|
* shape of colData shape of convolution matrix
|
|
* [inputChannels,
|
|
* filterHeight,
|
|
* filterWidth, ======> [height, width]
|
|
* outputHeight,
|
|
* outputWidth]
|
|
*
|
|
* If the template argument Format is kOCF, the shape of colData is:
|
|
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
|
|
* So, it is easy to reshape into a sequence matrix for rnn calculation.
|
|
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
|
|
* is equal outputHeight * outputWidth, and the stepSize is equal
|
|
* inputChannels * filterHeight * filterWidth.
|
|
*
|
|
* Reshape:
|
|
* shape of colData shape of sequence matrix
|
|
* [outputHeight,
|
|
* outputWidth,
|
|
* inputChannels, ======> [seqLength, stepSize]
|
|
* filterHeight,
|
|
* filterWidth]
|
|
*
|
|
* \note The caller needs to ensure that imShape.inputChannels is equal to
|
|
* colShape.inputChannels.
|
|
*/
|
|
template <ColFormat Format, DeviceType Device, class T>
|
|
class Im2ColFunctor {
|
|
public:
|
|
void operator()(const T* imData,
|
|
const TensorShape& imShape,
|
|
T* colData,
|
|
const TensorShape& colShape,
|
|
int strideHeight,
|
|
int strideWidth,
|
|
int paddingHeight,
|
|
int paddingWidth,
|
|
int dilationHeight = 1,
|
|
int dilationWidth = 1);
|
|
};
|
|
|
|
template <ColFormat Format, DeviceType Device, class T>
|
|
class Col2ImFunctor {
|
|
public:
|
|
void operator()(T* imData,
|
|
const TensorShape& imShape,
|
|
const T* colData,
|
|
const TensorShape& colShape,
|
|
int strideHeight,
|
|
int strideWidth,
|
|
int paddingHeight,
|
|
int paddingWidth,
|
|
int dilationHeight = 1,
|
|
int dilationWidth = 1);
|
|
};
|
|
|
|
template <class T>
|
|
class Im2ColMobileFunctor {
|
|
public:
|
|
void operator()(const T* imData,
|
|
const TensorShape& imShape,
|
|
T* colData,
|
|
const TensorShape& colShape,
|
|
int strideHeight,
|
|
int strideWidth,
|
|
int paddingHeight,
|
|
int paddingWidth,
|
|
int dilationHeight,
|
|
int dilationWidth,
|
|
int colHeightStart,
|
|
int colHeightSize,
|
|
int colWidthStart,
|
|
int colWidthSize) {
|
|
int inputHeight = imShape[1];
|
|
int inputWidth = imShape[2];
|
|
int filterHeight = colShape[1];
|
|
int filterWidth = colShape[2];
|
|
int outputWidth = colShape[4];
|
|
|
|
for (int colh = 0; colh < colHeightSize; colh++) {
|
|
int wOffset = (colHeightStart + colh) % filterWidth;
|
|
int hOffset = ((colHeightStart + colh) / filterWidth) % filterHeight;
|
|
int c_im = (colHeightStart + colh) / filterWidth / filterHeight;
|
|
|
|
for (int colw = 0; colw < colWidthSize; colw++) {
|
|
int h = (colWidthStart + colw) / outputWidth;
|
|
int w = (colWidthStart + colw) % outputWidth;
|
|
|
|
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
|
|
int imColIdx = w * strideWidth + wOffset * dilationWidth;
|
|
if ((imRowIdx - paddingHeight) < 0 ||
|
|
(imRowIdx - paddingHeight) >= inputHeight ||
|
|
(imColIdx - paddingWidth) < 0 ||
|
|
(imColIdx - paddingWidth) >= inputWidth) {
|
|
colData[colh * colWidthSize + colw] = static_cast<T>(0);
|
|
} else {
|
|
imRowIdx += c_im * inputHeight - paddingHeight;
|
|
imColIdx -= paddingWidth;
|
|
colData[colh * colWidthSize + colw] =
|
|
imData[imRowIdx * inputWidth + imColIdx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace paddle
|