You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.4 KiB
70 lines
2.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
#!/usr/bin/env python
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
######################## data source ################################
|
|
dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict'
|
|
dict_file = dict()
|
|
for line_count, line in enumerate(open(dict_path, "r")):
|
|
dict_file[line.strip()] = line_count
|
|
|
|
define_py_data_sources2(
|
|
train_list='gserver/tests/Sequence/train.list',
|
|
test_list=None,
|
|
module='sequenceGen',
|
|
obj='process',
|
|
args={"dict_file": dict_file})
|
|
|
|
settings(batch_size=5)
|
|
######################## network configure ################################
|
|
dict_dim = len(open(dict_path, 'r').readlines())
|
|
word_dim = 128
|
|
hidden_dim = 128
|
|
label_dim = 3
|
|
|
|
# This config is designed to be equivalent with sequence_recurrent_group.py
|
|
|
|
data = data_layer(name="word", size=dict_dim)
|
|
|
|
emb = embedding_layer(
|
|
input=data, size=word_dim, param_attr=ParamAttr(name="emb"))
|
|
|
|
recurrent = recurrent_layer(input=emb, bias_attr=False, act=SoftmaxActivation())
|
|
|
|
recurrent_last = last_seq(input=recurrent)
|
|
|
|
with mixed_layer(
|
|
size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output:
|
|
output += full_matrix_projection(input=recurrent_last)
|
|
|
|
outputs(
|
|
classification_cost(
|
|
input=output, label=data_layer(
|
|
name="label", size=1)))
|