You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/test_CompareTwoNets.cpp

210 lines
6.3 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <algorithm>
#include <cstdlib>
#include "paddle/trainer/Trainer.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
DECLARE_int32(gpu_id);
DECLARE_bool(local);
DECLARE_bool(use_gpu);
DECLARE_string(config);
DECLARE_string(nics);
DEFINE_bool(need_high_accuracy,
false,
"whether need to run in double accuracy");
DEFINE_double(
max_diff_ratio,
0.0f,
"max diff ratio allowed for outputs and parameters (value/gradient)");
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_int32(seed);
static const string& config_file_a = "gserver/tests/sequence_recurrent.py";
static const string& config_file_b =
"gserver/tests/sequence_recurrent_group.py";
struct ComData {
vector<Argument> outArgs;
vector<ParameterPtr> parameters;
};
void calcGradient(ComData& data, const string configFile) {
FLAGS_config = configFile;
FLAGS_local = true;
FLAGS_use_gpu = false;
FLAGS_nics = "";
*ThreadLocalRand::getSeed() = FLAGS_seed;
srand(FLAGS_seed);
Trainer trainer;
trainer.init(TrainerConfigHelper::createFromFlagConfig(), false);
data.parameters = trainer.getGradientMachine()->getParameters();
DataBatch dataBatch;
int32_t batchSize = trainer.getConfig().opt_config().batch_size();
trainer.getDataProvider()->reset();
trainer.getDataProvider()->setSkipShuffle();
trainer.getDataProvider()->getNextBatch(batchSize, &dataBatch);
CHECK(dataBatch.getSize()) << "No data from data provider";
vector<Argument>& inArgs = dataBatch.getStreams();
trainer.getGradientMachine()->start();
trainer.getGradientMachine()->forwardBackward(
inArgs, &data.outArgs, PASS_TRAIN);
trainer.getGradientMachine()->finish();
}
void checkBuffer(real* A,
const char* desA,
real* B,
const char* desB,
size_t len,
size_t width = 1) {
int nNum = 0;
real maxVal = 0;
for (size_t i = 0; i < len; ++i) {
maxVal = std::max(maxVal, std::max(A[i], B[i]));
}
real maxDiff = 0;
for (size_t i = 0; i < len; ++i) {
real diff = fabs(A[i] - B[i]);
maxDiff = std::max(maxDiff, diff);
if (diff > maxVal * FLAGS_max_diff_ratio) {
nNum++;
VLOG(1) << "Row: " << i / width << ", " << desA << " : " << A[i] << " "
<< desB << " : " << B[i] << " diff=" << diff;
}
}
EXPECT_EQ(0, nNum);
LOG(INFO) << "maxValue=" << maxVal << " maxDiff=" << maxDiff << "\n\n";
}
void compareGradient(ComData& comDataA, ComData& comDataB) {
vector<Argument> outArgsA = comDataA.outArgs;
vector<Argument> outArgsB = comDataB.outArgs;
for (size_t i = 0; i < outArgsA.size(); ++i) {
CpuMatrix matA(outArgsA[i].value->getHeight(),
outArgsA[i].value->getWidth());
CpuMatrix matB(outArgsB[i].value->getHeight(),
outArgsB[i].value->getWidth());
matA.copyFrom(*outArgsA[i].value);
matB.copyFrom(*outArgsB[i].value);
LOG(INFO) << "\n--------------------------------"
<< " Check Network Output_" << i << ":"
<< " -------------------------------------\n";
checkBuffer(matA.getData(),
"network A output",
matB.getData(),
"network B output",
matA.getElementCnt(),
matA.getWidth());
}
vector<ParameterPtr>& parametersA = comDataA.parameters;
vector<ParameterPtr>& parametersB = comDataB.parameters;
LOG(INFO) << "\n\n--------------------------------"
<< " Check Gradient Machine Parameters:"
<< " -------------------------------------\n";
for (size_t i = 0; i < parametersA.size(); ++i) {
ParameterPtr parameterA, parameterB;
parameterA = parametersA[i];
parameterB = parametersB[i];
CpuVector paraA(parameterA->getSize());
CpuVector paraB(parameterB->getSize());
paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));
LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName()
<< " ; size : " << paraA.getSize() << " ------------";
checkBuffer(paraA.getData(),
"Network A",
paraB.getData(),
"Network B",
paraA.getSize());
CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT));
CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT));
LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName()
<< " ; size : " << gradA.getSize() << " -----------";
checkBuffer(gradA.getData(),
"Network A",
gradB.getData(),
"Network B",
gradA.getSize());
}
}
TEST(Trainer, create) {
ComData dataA;
calcGradient(dataA, config_file_a);
LOG(INFO) << "\n\nforwardBackward of Network A is finished\n\n";
ComData dataB;
calcGradient(dataB, config_file_b);
LOG(INFO) << "\n\nforwardBackward of the Network B is finished\n\n";
compareGradient(dataA, dataB);
}
int main(int argc, char** argv) {
FLAGS_thread_local_rand_use_global_seed = true;
paddle::initMain(argc, argv);
testing::InitGoogleTest(&argc, argv);
initPython(argc, argv);
#ifndef PADDLE_TYPE_DOUBLE
if (FLAGS_need_high_accuracy) {
LOG(INFO) << "skip test due to it's need high accuracy";
return 0;
}
if (FLAGS_max_diff_ratio == 0.0f) {
FLAGS_max_diff_ratio = 1e-5;
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
<< " in low accuracy mode";
}
#else
if (FLAGS_max_diff_ratio == 0.0f) {
FLAGS_max_diff_ratio = 1e-10;
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
<< " in high accuracy mode";
}
#endif
int ret = RUN_ALL_TESTS();
return ret;
}