You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
5.3 KiB
165 lines
5.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "ModelConfig.pb.h"
|
|
#include "paddle/gserver/layers/DataLayer.h"
|
|
#include "paddle/utils/GlobalConstants.h"
|
|
|
|
#include "LayerGradUtil.h"
|
|
#include "paddle/testing/TestUtil.h"
|
|
|
|
using namespace paddle; // NOLINT
|
|
using namespace std; // NOLINT
|
|
|
|
DECLARE_bool(use_gpu);
|
|
DECLARE_int32(gpu_id);
|
|
DECLARE_bool(thread_local_rand_use_global_seed);
|
|
|
|
vector<int> randSampling(int range, int n) {
|
|
CHECK_GE(range, n);
|
|
vector<int> num(range);
|
|
iota(begin(num), end(num), 0);
|
|
if (range == n) return num;
|
|
|
|
random_shuffle(begin(num), end(num));
|
|
num.resize(n);
|
|
return num;
|
|
}
|
|
|
|
void genRandomSeqInfo(vector<int>& seqStartPosition,
|
|
vector<int>& subSeqStartPosition) {
|
|
const int maxSeqNum = 100;
|
|
// generate random start position information
|
|
int seqNum = 1 + (rand() % maxSeqNum);
|
|
seqStartPosition.resize(seqNum + 1, 0);
|
|
subSeqStartPosition.resize(1, 0);
|
|
|
|
for (int i = 0; i < seqNum; ++i) {
|
|
int subSeqLen = 1 + (rand() % maxSeqNum);
|
|
for (int j = 0; j < subSeqLen; ++j)
|
|
subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen);
|
|
seqStartPosition[i + 1] = subSeqStartPosition.back();
|
|
}
|
|
}
|
|
|
|
void genRandomGroundTruth(real* values,
|
|
vector<vector<int>>& groundTruth,
|
|
vector<int>& startPos,
|
|
size_t beamSize) {
|
|
groundTruth.resize(startPos.size() - 1, vector<int>(beamSize, -1));
|
|
for (size_t i = 0; i < startPos.size() - 1; ++i) {
|
|
int seqLen = startPos[i + 1] - startPos[i];
|
|
vector<int> pos =
|
|
randSampling(seqLen, min(static_cast<int>(beamSize), seqLen));
|
|
for (size_t j = 0; j < pos.size(); ++j) {
|
|
groundTruth[i][j] = pos[j];
|
|
values[startPos[i] + pos[j]] = 1.;
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkLayerOut(vector<vector<int>> groundTruth,
|
|
real* layerOut,
|
|
size_t beamSize) {
|
|
for (size_t i = 0; i < groundTruth.size(); ++i) {
|
|
int begPos = i * beamSize;
|
|
vector<real> tmp(layerOut + begPos, layerOut + begPos + beamSize);
|
|
sort(begin(tmp), end(tmp));
|
|
sort(begin(groundTruth[i]), end(groundTruth[i]));
|
|
for (size_t j = 0; j < beamSize; ++j) CHECK_EQ(tmp[j], groundTruth[i][j]);
|
|
}
|
|
}
|
|
|
|
TEST(Layer, kmaxSeqScoreLayer) {
|
|
const size_t maxBeamSize = 100;
|
|
size_t beamSize = 1 + (rand() % maxBeamSize);
|
|
|
|
vector<int> seqStartPosition;
|
|
vector<int> subSeqStartPosition;
|
|
genRandomSeqInfo(seqStartPosition, subSeqStartPosition);
|
|
MatrixPtr inValue =
|
|
Matrix::create(subSeqStartPosition.back(), 1, false, false);
|
|
|
|
std::vector<bool> mode = {false};
|
|
#ifdef PADDLE_WITH_CUDA
|
|
mode.push_back(true);
|
|
#endif
|
|
|
|
for (auto hasSubseq : {false, true}) {
|
|
vector<vector<int>> groundTruth;
|
|
inValue->randomizeUniform();
|
|
genRandomGroundTruth(inValue->getData(),
|
|
groundTruth,
|
|
hasSubseq ? subSeqStartPosition : seqStartPosition,
|
|
beamSize);
|
|
|
|
for (auto useGpu : mode) {
|
|
TestConfig config;
|
|
config.layerConfig.set_type("kmax_seq_score");
|
|
config.layerConfig.set_beam_size(beamSize);
|
|
|
|
if (hasSubseq) {
|
|
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
|
|
"scores",
|
|
inValue,
|
|
seqStartPosition,
|
|
subSeqStartPosition});
|
|
} else {
|
|
config.inputDefs.push_back(
|
|
{INPUT_SELF_DEFINE_DATA, "scores", inValue, seqStartPosition});
|
|
}
|
|
config.layerConfig.add_inputs();
|
|
|
|
// data layer initialize
|
|
std::vector<DataLayerPtr> dataLayers;
|
|
LayerMap layerMap;
|
|
vector<Argument> datas;
|
|
initDataLayer(
|
|
config,
|
|
&dataLayers,
|
|
&datas,
|
|
&layerMap,
|
|
"kmax_seq_score",
|
|
100 /* actually this parameter is unused in self-defined input*/,
|
|
false,
|
|
useGpu);
|
|
// test layer initialize
|
|
std::vector<ParameterPtr> parameters;
|
|
LayerPtr kmaxSeqScoreLayer;
|
|
FLAGS_use_gpu = useGpu;
|
|
initTestLayer(config, &layerMap, ¶meters, &kmaxSeqScoreLayer);
|
|
kmaxSeqScoreLayer->forward(PASS_TRAIN);
|
|
|
|
const MatrixPtr outValue = kmaxSeqScoreLayer->getOutputValue();
|
|
CHECK_EQ(outValue->getHeight(),
|
|
hasSubseq ? subSeqStartPosition.size() - 1
|
|
: seqStartPosition.size() - 1);
|
|
CHECK_EQ(outValue->getWidth(), beamSize);
|
|
checkLayerOut(groundTruth, outValue->getData(), beamSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
testing::InitGoogleTest(&argc, argv);
|
|
initMain(argc, argv);
|
|
FLAGS_thread_local_rand_use_global_seed = true;
|
|
srand((size_t)(time(NULL)));
|
|
return RUN_ALL_TESTS();
|
|
}
|