You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
3.0 KiB
81 lines
3.0 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/controlflow/conditional_block_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/fluid/framework/executor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#include "paddle/fluid/framework/var_type.h"
|
|
|
|
USE_NO_KERNEL_OP(conditional_block);
|
|
USE_NO_KERNEL_OP(conditional_block_grad);
|
|
|
|
using LoDTensor = paddle::framework::LoDTensor;
|
|
using LoDTensorArray = paddle::framework::LoDTensorArray;
|
|
using Scope = paddle::framework::Scope;
|
|
using Variable = paddle::framework::Variable;
|
|
using Place = paddle::platform::Place;
|
|
|
|
TEST(ConditionalBlockGrad, NoNeedRunLoDTensorArray) {
|
|
Place place = paddle::platform::CPUPlace();
|
|
Scope scope;
|
|
|
|
Variable* cond_var = scope.Var("condition");
|
|
LoDTensor* cond_tensor = cond_var->GetMutable<LoDTensor>();
|
|
paddle::framework::DDim cond_dims = paddle::framework::make_ddim({1});
|
|
bool* cond_data = cond_tensor->mutable_data<bool>(cond_dims, place);
|
|
cond_data[0] = false;
|
|
|
|
Variable* input_var = scope.Var("input_lod_tensor_array");
|
|
LoDTensorArray* input_tensors = input_var->GetMutable<LoDTensorArray>();
|
|
for (int i = 0; i < 5; ++i) {
|
|
paddle::framework::DDim in_dims =
|
|
paddle::framework::make_ddim({i + 1, i + 2});
|
|
LoDTensor lod_tensor;
|
|
float* in_data = lod_tensor.mutable_data<float>(in_dims, place);
|
|
for (int j = 0; j < (i + 1) * (i + 2); ++j) {
|
|
in_data[j] = static_cast<float>(j);
|
|
}
|
|
input_tensors->push_back(lod_tensor);
|
|
}
|
|
|
|
Variable* input_grad_var = scope.Var("input_lod_tensor_array@GRAD");
|
|
LoDTensorArray* grad_tensors = input_grad_var->GetMutable<LoDTensorArray>();
|
|
grad_tensors->resize(5);
|
|
|
|
paddle::framework::AttributeMap attrs;
|
|
attrs.insert({"is_scalar_condition", true});
|
|
|
|
auto conditional_grad_op = paddle::framework::OpRegistry::CreateOp(
|
|
"conditional_block_grad",
|
|
{{"Input", {"input_lod_tensor_array"}}, {"Cond", {"condition"}}},
|
|
{{"Input@GRAD", {"input_lod_tensor_array@GRAD"}}}, attrs);
|
|
|
|
conditional_grad_op->Run(scope, place);
|
|
|
|
const LoDTensorArray& out_tensors = input_grad_var->Get<LoDTensorArray>();
|
|
for (int i = 0; i < 5; ++i) {
|
|
paddle::framework::DDim out_dims = out_tensors[i].dims();
|
|
EXPECT_EQ(paddle::framework::make_ddim({i + 1, i + 2}), out_dims);
|
|
const float* out_data = out_tensors[i].data<float>();
|
|
for (int j = 0; j < (i + 1) * (i + 2); ++j) {
|
|
EXPECT_EQ(0, out_data[j]);
|
|
}
|
|
}
|
|
}
|