You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
3.8 KiB
112 lines
3.8 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
|
|
import core
|
|
|
|
import executor
|
|
import framework
|
|
import io
|
|
import parallel_executor
|
|
import unique_name
|
|
from trainer import check_and_get_place
|
|
|
|
__all__ = ['Inferencer', ]
|
|
|
|
|
|
class Inferencer(object):
|
|
"""
|
|
Inferencer High Level API.
|
|
|
|
Args:
|
|
infer_func (Python func): Infer function that will return predict Variable
|
|
param_path (str): The path where the inference model is saved by fluid.io.save_params
|
|
place (Place): place to do the inference
|
|
parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
def inference_program():
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
return y_predict
|
|
|
|
place = fluid.CPUPlace()
|
|
inferencer = fluid.Inferencer(
|
|
infer_func=inference_program, param_path="/tmp/model", place=place)
|
|
|
|
"""
|
|
|
|
def __init__(self, infer_func, param_path, place=None, parallel=False):
|
|
self.param_path = param_path
|
|
self.scope = core.Scope()
|
|
self.parallel = parallel
|
|
self.place = check_and_get_place(place)
|
|
|
|
self.inference_program = framework.Program()
|
|
with framework.program_guard(self.inference_program):
|
|
with unique_name.guard():
|
|
self.predict_var = infer_func()
|
|
|
|
with self._prog_and_scope_guard():
|
|
# load params from param_path into scope
|
|
io.load_params(executor.Executor(self.place), param_path)
|
|
|
|
if parallel:
|
|
with self._prog_and_scope_guard():
|
|
self.exe = parallel_executor.ParallelExecutor(
|
|
use_cuda=isinstance(self.place, core.CUDAPlace),
|
|
loss_name=self.predict_var.name)
|
|
else:
|
|
self.exe = executor.Executor(self.place)
|
|
|
|
self.inference_program = self.inference_program.clone(for_test=True)
|
|
|
|
def infer(self, inputs, return_numpy=True):
|
|
"""
|
|
Do Inference for Inputs
|
|
|
|
Args:
|
|
inputs (map): a map of {"input_name": input_var} that will be feed into the inference program
|
|
return_numpy (bool): transform return value into numpy or not
|
|
|
|
Returns:
|
|
Tensor or Numpy: the predict value of the inference model for the inputs
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
|
|
results = inferencer.infer({'x': tensor_x})
|
|
"""
|
|
if not isinstance(inputs, dict):
|
|
raise ValueError(
|
|
"inputs should be a map of {'input_name': input_var}")
|
|
|
|
with executor.scope_guard(self.scope):
|
|
results = self.exe.run(self.inference_program,
|
|
feed=inputs,
|
|
fetch_list=[self.predict_var],
|
|
return_numpy=return_numpy)
|
|
|
|
return results
|
|
|
|
@contextlib.contextmanager
|
|
def _prog_and_scope_guard(self):
|
|
with framework.program_guard(main_program=self.inference_program):
|
|
with executor.scope_guard(self.scope):
|
|
yield
|