You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/layers/io.py

816 lines
28 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from .. import core
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
from ..unique_name import generate as unique_name
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
from ..executor import global_scope
from layer_function_generator import generate_layer_fn, templatedoc
__all__ = [
'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'Recv',
'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
'double_buffer', 'random_data_generator', 'Preprocessor', 'load'
]
def data(name,
shape,
append_batch_size=True,
dtype='float32',
lod_level=0,
type=core.VarDesc.VarType.LOD_TENSOR,
stop_gradient=True):
"""
**Data Layer**
This function takes in the input and based on whether data has
to be returned back as a minibatch, it creates the global variable by using
the helper functions. The global variables can be accessed by all the
following operators in the graph.
All the input variables of this function are passed in as local variables
to the LayerHelper constructor.
Args:
name(str): The name/alias of the function
shape(list): Tuple declaring the shape.
append_batch_size(bool): Whether or not to append the data as a batch.
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
stop_gradient(bool): A boolean that mentions whether gradient should flow.
Returns:
Variable: The global variable that gives access to the data.
Examples:
.. code-block:: python
data = fluid.layers.data(name='x', shape=[784], dtype='float32')
"""
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in xrange(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
elif shape[i] < 0:
append_batch_size = False
if append_batch_size:
shape = [-1] + shape # append batch size as -1
data_var = helper.create_global_variable(
name=name,
shape=shape,
dtype=dtype,
type=type,
stop_gradient=stop_gradient,
lod_level=lod_level,
is_data=True)
return data_var
class BlockGuardServ(BlockGuard):
"""
BlockGuardServ class.
BlockGuardServ class is used to create an op with a block in a program.
"""
def __init__(self, server):
if not (isinstance(server, ListenAndServ)):
raise TypeError("BlockGuardServ takes a ListenAndServ")
super(BlockGuardServ, self).__init__(server.helper.main_program)
self.server = server
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None:
return False
self.server.complete_op()
return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)
class ListenAndServ(object):
"""
**ListenAndServ Layer**
ListenAndServ is used to create a rpc server bind and listen
on specific TCP port, this server will run the sub-block when
received variables from clients.
Args:
endpoint(string): IP:port string which the server will listen on.
inputs(list): a list of variables that the server will get from clients.
fan_in(int): how many client are expected to report to this server, default: 1.
optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Examples:
.. code-block:: python
with fluid.program_guard(main):
serv = layers.ListenAndServ(
"127.0.0.1:6170", ["X"], optimizer_mode=False)
with serv.do():
x = layers.data(
shape=[32, 32],
dtype='float32',
name="X",
append_batch_size=False)
fluid.initializer.Constant(value=1.0)(x, main.global_block())
layers.scale(x=x, scale=10.0, out=out_var)
exe = fluid.Executor(place)
exe.run(main)
"""
def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
self.helper = LayerHelper("listen_and_serv")
self.inputs = inputs
self.outputs = []
self.endpoint = endpoint
self.fan_in = fan_in
# FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
# general.
self.optimizer_mode = optimizer_mode
def do(self):
return BlockGuardServ(self)
def get_params_and_grads(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
# params and grads in the same order.
params = list()
grads = list()
for op in current_block.ops:
# FIXME(typhoonzero): op.inputs is None if it's cloned.
if self.optimizer_mode:
if "Grad" in op.inputs and "Param" in op.inputs:
params.append(op.inputs["Param"].name)
grads.append(op.inputs["Grad"].name)
else:
# simple recv mode, recv operators inputs.
for iname in op.input_names:
for in_var_name in op.input(iname):
params.append(parent_block.var(in_var_name))
grads.append(parent_block.var(in_var_name))
return params, grads
def parent_block(self):
prog = self.helper.main_program
parent_idx = prog.current_block().parent_idx
assert parent_idx >= 0
parent_block = prog.block(parent_idx)
return parent_block
def complete_op(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
empty_block = Program().global_block()
parent_block.append_op(
type='listen_and_serv',
inputs={"X": self.inputs},
outputs={},
attrs={
'endpoint': self.endpoint,
'Fanin': self.fan_in,
'OptimizeBlock': current_block,
'PrefetchBlock': empty_block,
'sync_mode': True, # did not support async now in layers
'grad_to_block_id': [""]
})
def Send(endpoints, send_vars, sync=True):
"""
Send variables to the server side, and get vars from server
side when server have finished running server side program.
Args:
endpoints (str): comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars (list): variables to send to server
sync (bool): whether to wait the request finish
"""
assert (type(send_vars) == list)
epmap = endpoints.split(",")
endpoints = list(set(epmap))
helper = LayerHelper("Send", **locals())
rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
helper.append_op(
type="send",
inputs={"X": send_vars},
attrs={
"endpoints": endpoints,
"epmap": epmap,
rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
})
if sync:
helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
def Recv(endpoints, get_vars, sync=True):
"""
Receive variables from server side
Args:
endpoints (str): comma seperated IP:PORT pairs in the order
of send_vars to send
get_vars (list): vars to get from server after send completes.
sync (bool): whether to wait the request finish
Returns:
list: list of received variables
"""
assert (type(get_vars) == list)
epmap = endpoints.split(",")
endpoints = list(set(epmap))
helper = LayerHelper("Recv", **locals())
helper.append_op(
type="recv",
inputs={"X": get_vars},
outputs={"Out": get_vars},
attrs={"endpoints": endpoints,
"epmap": epmap})
if sync:
helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
return get_vars
def monkey_patch_reader_methods(reader):
def __get_reader__():
scope = global_scope()
var = scope.find_var(reader.name)
return var.get_reader()
def reset():
return __get_reader__().reset()
reader.reset = reset
reader.stop_gradient = True
reader.persistable = True
return reader
def _copy_reader_var_(block, var):
new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
new_var.desc.set_shapes(var.desc.shapes())
new_var.desc.set_dtypes(var.desc.dtypes())
new_var.persistable = True
return new_var
def _copy_reader_create_op_(block, op):
input_param_names = op.input_names
new_input_map = {}
for param_name in input_param_names:
new_input_map[param_name] = []
arg_names = op.input(param_name)
for arg_name in arg_names:
new_input_map[param_name].append(block.var(arg_name))
output_param_names = op.output_names
new_output_map = {}
for param_name in output_param_names:
new_output_map[param_name] = []
arg_names = op.output(param_name)
for arg_name in arg_names:
new_output_map[param_name].append(block.var(arg_name))
new_op = block.append_op(
type=op.type,
inputs=new_input_map,
outputs=new_output_map,
attrs=op.all_attrs())
return new_op
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
shapes,
lod_levels,
dtypes,
pass_num=1,
for_parallel=True):
"""
${comment}
Args:
filename(${filename_type}): ${filename_comment}.
shapes(list): List of tuples which declaring data shapes.
lod_levels(${lod_levels_type}): ${lod_levels_comment}.
dtypes(list): List of strs which declaring data type.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
${out_comment}.
Examples:
>>> import paddle.fluid as fluid
>>> reader = fluid.layers.io.open_recordio_file(
>>> filename='./data.recordio',
>>> shapes=[(3,224,224), (1)],
>>> lod_levels=[0, 0],
>>> dtypes=['float32', 'int64'])
>>> # Via the reader, we can use 'read_file' layer to get data:
>>> image, label = fluid.layers.io.read_file(reader)
"""
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
var_name = unique_name('open_recordio_file')
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startup_blk.append_op(
type='create_recordio_file_reader',
outputs={'Out': [startup_var]},
attrs={
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'filename': filename,
'ranks': ranks
})
startup_var.desc.set_dtypes(dtypes)
startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
if pass_num > 1:
main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
if for_parallel:
main_prog_var = parallel(reader=main_prog_var)
return monkey_patch_reader_methods(main_prog_var)
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
"""
Create a uniform random data generator
This layer returns a Reader Variable.
Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without
opening a real file.
Args:
low(float): The lower bound of data's uniform distribution.
high(float): The upper bound of data's uniform distribution.
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
Variable: A Reader Variable from which we can get random data.
Examples:
.. code-block:: python
reader = fluid.layers.random_data_generator(
low=0.0,
high=1.0,
shapes=[[3,224,224], [1]],
lod_levels=[0, 0])
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.read_file(reader)
"""
dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
var_name = unique_name('random_data_generator')
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startup_blk.append_op(
type='create_random_data_generator',
outputs={'Out': [startup_var]},
attrs={
'low': low,
'high': high,
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'ranks': ranks
})
startup_var.desc.set_dtypes(dtypes)
startup_var.persistable = True
main_prog_var = _copy_reader_var_(default_main_program().current_block(),
startup_var)
if for_parallel:
main_prog_var = parallel(reader=main_prog_var)
return monkey_patch_reader_methods(main_prog_var)
def open_files(filenames,
shapes,
lod_levels,
dtypes,
thread_num=1,
buffer_size=None,
pass_num=1,
for_parallel=True):
"""
Open files
This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'.
Args:
filenames(list): The list of file names.
shapes(list): List of tuples which declaring data shapes.
lod_levels(list): List of ints which declaring data lod_level.
dtypes(list): List of strs which declaring data type.
thread_num(int): The maximal concurrent prefetch thread number.
buffer_size(int): The size of prefetch buffer.
pass_num(int): Number of passes to run.
for_parallel(Bool): Set it as True if you are going to run
subsequent operators in parallel.
Returns:
Variable: A Reader Variable via which we can get file data.
Examples:
.. code-block:: python
reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
'./data2.recordio'],
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
thread_num=2,
buffer_size=2)
# Via the reader, we can use 'read_file' layer to get data:
image, label = fluid.layers.io.read_file(reader)
"""
if buffer_size is None:
buffer_size = thread_num
if isinstance(filenames, basestring):
filenames = [filenames]
dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
shape_concat = []
ranks = []
for shape in shapes:
shape_concat.extend(shape)
ranks.append(len(shape))
multi_file_reader_name = unique_name('multi_file_reader')
startup_blk = default_startup_program().current_block()
startup_reader = startup_blk.create_var(name=multi_file_reader_name)
startup_blk.append_op(
type='open_files',
outputs={'Out': [startup_reader]},
attrs={
'shape_concat': shape_concat,
'lod_levels': lod_levels,
'ranks': ranks,
'file_names': filenames,
'thread_num': thread_num,
'buffer_size': buffer_size
})
startup_reader.desc.set_dtypes(dtypes)
startup_reader.persistable = True
main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
startup_reader)
if pass_num > 1:
main_prog_reader = multi_pass(
reader=main_prog_reader, pass_num=pass_num)
if for_parallel:
main_prog_reader = parallel(reader=main_prog_reader)
return monkey_patch_reader_methods(main_prog_reader)
def __create_shared_decorated_reader__(op_type, reader, attrs):
var_name = unique_name(op_type)
startup_blk = default_startup_program().current_block()
startup_var = startup_blk.create_var(name=var_name)
startop_op = startup_blk.append_op(
type=op_type,
inputs={'UnderlyingReader': reader},
outputs={'Out': [startup_var]},
attrs=attrs)
startup_var.persistable = True
main_prog_block = default_main_program().current_block()
main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
_copy_reader_create_op_(main_prog_block, startop_op)
return monkey_patch_reader_methods(main_prog_var)
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
new_reader_name = name if name is not None else unique_name(op_type)
main_blk = default_main_program().current_block()
new_reader = main_blk.create_var(name=new_reader_name)
main_blk.append_op(
type=op_type,
inputs={'UnderlyingReader': reader},
outputs={'Out': [new_reader]},
attrs=attrs)
return monkey_patch_reader_methods(new_reader)
def shuffle(reader, buffer_size):
"""
Shuffle the reader.
"""
return __create_unshared_decorated_reader__(
'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
def batch(reader, batch_size):
"""
This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized
to the form of batches.
Args:
reader(Variable): The reader to be decorated with 'batching'.
batch_size(int): The batch size.
Returns:
Variable: The reader which has been decorated with 'batching'.
Examples:
.. code-block:: python
raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
'./data2.recordio'],
shapes=[(3,224,224), (1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
thread_num=2,
buffer_size=2)
batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)
# If we read data with the raw_reader:
# data = fluid.layers.read_file(raw_reader)
# We can only get data instance by instance.
#
# However, if we read data with the batch_reader:
# data = fluid.layers.read_file(batch_reader)
# Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead
# of an instance.
"""
return __create_unshared_decorated_reader__(
'create_batch_reader', reader, {'batch_size': int(batch_size)})
def double_buffer(reader, place=None, name=None):
"""
Wrap a double buffer reader. The data will copy to target place with a
double buffer queue. If the target place is None, the place that executor
perform on will be used.
Args:
reader(Variable): the reader variable need to be wrapped.
place(Place): the place of target data. Default is the sample place of
executor perform.
name(str): Variable name. None if the user does not care.
Returns:
wrapped reader with double buffer.
Examples:
>>> reader = fluid.layers.open_files(filenames=['somefile'],
>>> shapes=[[-1, 784], [-1, 1]],
>>> dtypes=['float32', 'int64'])
>>> reader = fluid.layers.double_buffer(reader)
>>> img, label = fluid.layers.read_file(reader)
"""
attrs = dict()
if place is not None:
attrs['place'] = str(place).upper()
return __create_unshared_decorated_reader__(
'create_double_buffer_reader', reader, attrs, name=name)
def multi_pass(reader, pass_num):
return __create_shared_decorated_reader__(
'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
def parallel(reader):
return __create_shared_decorated_reader__('create_threaded_reader', reader,
{})
def read_file(reader):
"""
Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on.
Args:
reader(Variable): The reader to execute.
Returns:
Tuple[Variable]: Data read via the given reader.
Examples:
.. code-block:: python
data_file = fluid.layers.open_files(
filenames=['mnist.recordio'],
shapes=[(-1, 748), (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"])
data_file = fluid.layers.double_buffer(
fluid.layers.batch(data_file, batch_size=64))
input, label = fluid.layers.read_file(data_file)
"""
helper = LayerHelper('read_file')
out = [
helper.create_tmp_variable(
stop_gradient=True, dtype='float32')
for _ in range(len(reader.desc.shapes()))
]
helper.append_op(
type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
if len(out) == 1:
return out[0]
else:
return out
class Preprocessor(object):
"""
A block for data pre-processing in reader.
Args:
reader (Variable): A reader variable.
name (str, default None): The name of the reader.
Examples:
.. code-block:: python
preprocessor = fluid.layers.io.Preprocessor(reader=reader)
with preprocessor.block():
img, lbl = preprocessor.inputs()
img_out = img / 2
lbl_out = lbl + 1
preprocessor.outputs(img_out, lbl_out)
data_file = fluid.layers.io.double_buffer(preprocessor())
"""
BEFORE_SUB_BLOCK = 0
IN_SUB_BLOCK = 1
AFTER_SUB_BLOCK = 2
def __init__(self, reader, name=None):
self.underlying_reader = reader
new_reader_name = name if name is not None else unique_name(
"create_custom_reader")
self.main_prog = default_main_program()
self.reader = self.main_prog.current_block().create_var(
name=new_reader_name)
self.sub_block = None
self.source_var_names = None
self.sink_var_names = None
self.status = Preprocessor.BEFORE_SUB_BLOCK
def is_completed(self):
return self.sub_block and self.source_var_names and self.sink_var_names
@contextlib.contextmanager
def block(self):
self.status = Preprocessor.IN_SUB_BLOCK
self.sub_block = self.main_prog.create_block()
yield
self.main_prog.rollback()
self.status = Preprocessor.AFTER_SUB_BLOCK
if not self.is_completed():
raise RuntimeError(
"The definition of preprocessor is incompleted! "
"Please make sure that you have set input and output "
"variables by invoking 'inputs' and 'outputs' in "
"Preprocessor's sub-block.")
def inputs(self):
if self.status != Preprocessor.IN_SUB_BLOCK:
raise RuntimeError(
"Preprocessor.inputs() can only be invoked inside the sub-block."
)
source_shapes = self.underlying_reader.desc.shapes()
source_dtypes = self.underlying_reader.desc.dtypes()
source_lod_levels = self.underlying_reader.desc.lod_levels()
self.source_var_names = [
unique_name("preprocessor_source")
for _ in xrange(len(source_shapes))
]
source_vars = []
for var_name, shape, dtype, lod_level in zip(
self.source_var_names, source_shapes, source_dtypes,
source_lod_levels):
source_vars.append(self.main_prog.current_block().create_var(
name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
return source_vars
def outputs(self, *outs):
if self.status != Preprocessor.IN_SUB_BLOCK:
raise RuntimeError(
"Preprocessor.outputs() can only be invoked inside the sub-block."
)
self.sink_var_names = [var.name for var in outs]
def __call__(self, *args, **kwargs):
if self.status != Preprocessor.AFTER_SUB_BLOCK:
raise RuntimeError(
"Preprocessor output can only be retrieved after rnn block.")
self.main_prog.current_block().append_op(
type="create_custom_reader",
inputs={'UnderlyingReader': self.underlying_reader},
outputs={'Out': [self.reader]},
attrs={
"sub_block": self.sub_block,
"source_var_names": self.source_var_names,
"sink_var_names": self.sink_var_names
})
return monkey_patch_reader_methods(self.reader)
@templatedoc()
def load(out, file_path, load_as_fp16=None):
"""
${comment}
>>> import paddle.fluid as fluid
>>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
>>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Args:
out(${out_type}): ${out_comment}.
file_path(${file_path_type}): ${file_path_comment}.
load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.
Returns:
None
"""
helper = LayerHelper("load", **locals())
attrs = {"file_path": file_path}
if load_as_fp16 is not None:
attrs['load_as_fp16'] = load_as_fp16
helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)