You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
399 lines
16 KiB
399 lines
16 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
from .. import core
|
|
from ..framework import Program, default_main_program, Parameter, Variable
|
|
from ..backward import _rename_arg_
|
|
|
|
dtype_to_size = {
|
|
core.VarDesc.VarType.FP16: 2,
|
|
core.VarDesc.VarType.FP32: 4,
|
|
core.VarDesc.VarType.FP64: 8,
|
|
core.VarDesc.VarType.INT16: 2,
|
|
core.VarDesc.VarType.INT32: 4,
|
|
core.VarDesc.VarType.INT64: 8,
|
|
core.VarDesc.VarType.BOOL: 1,
|
|
core.VarDesc.VarType.UINT8: 1,
|
|
}
|
|
|
|
SUB_BLOCK_OPS = [
|
|
"while", "while_grad", "parallel_do", "parallel_do_grad",
|
|
"conditional_block", "conditional_block_grad"
|
|
]
|
|
|
|
SUB_BLOCK_PAIR = [("while", "while_grad"), ("parallel_do", "parallel_do_grad"),
|
|
("conditional_block", "conditional_block_grad")]
|
|
|
|
PRINT_LOG = False
|
|
|
|
|
|
class ControlFlowGraph(object):
|
|
def __init__(self, program, ops, forward_num, skip_opt):
|
|
self._program = program
|
|
self._ops = ops
|
|
self._forward_num = forward_num
|
|
self._successors = defaultdict(set)
|
|
self._presuccessors = defaultdict(set)
|
|
self._uses = defaultdict(set)
|
|
self._defs = defaultdict(set)
|
|
self._live_in = defaultdict(set)
|
|
self._live_out = defaultdict(set)
|
|
self._skip_opt = skip_opt
|
|
|
|
def _add_connections(self, connections):
|
|
"""Populates _successors and _presuccessors for two neighbor nodes."""
|
|
for node1, node2 in connections:
|
|
self._add(node1, node2)
|
|
|
|
def _add(self, node1, node2):
|
|
self._successors[node1].add(node2)
|
|
self._presuccessors[node2].add(node1)
|
|
|
|
# TODO(panyx0718): We need to have a unified way of building intermediate
|
|
# representation.
|
|
def _build_graph(self):
|
|
"""Build a graph based on op sequence.
|
|
"""
|
|
self.op_size = len(self._ops)
|
|
op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
|
|
self._add_connections(op_node_connections)
|
|
for i in range(self.op_size):
|
|
self._uses[i].update(self._ops[i].input_arg_names())
|
|
self._defs[i].update(self._ops[i].output_arg_names())
|
|
|
|
def _update_graph(self, old_name, new_name, begin_idx=0):
|
|
for i in range(begin_idx, self.op_size):
|
|
if old_name in self._uses[i]:
|
|
self._uses[i].remove(old_name)
|
|
self._uses[i].add(new_name)
|
|
if old_name in self._defs[i]:
|
|
self._defs[i].remove(old_name)
|
|
self._defs[i].add(new_name)
|
|
if old_name in self._live_in[i]:
|
|
self._live_in[i].remove(old_name)
|
|
self._live_out[i].add(new_name)
|
|
if old_name in self._live_out[i]:
|
|
self._live_out[i].remove(old_name)
|
|
self._live_out[i].add(new_name)
|
|
|
|
def _reach_fixed_point(self, live_in, live_out):
|
|
"""Check if the liveness set has stablized."""
|
|
if len(live_in) != len(self._live_in):
|
|
return False
|
|
if len(live_out) != len(self._live_out):
|
|
return False
|
|
for i in range(self.op_size):
|
|
if (live_in[i] != self._live_in[i] or
|
|
live_out[i] != self._live_out[i]):
|
|
return False
|
|
return True
|
|
|
|
def _dataflow_analyze(self):
|
|
self._build_graph()
|
|
live_in = defaultdict(set)
|
|
live_out = defaultdict(set)
|
|
# Repeatedly apply liveness updates until the algorithm stablize
|
|
# on a complete set live input vars and live output vars.
|
|
while True:
|
|
for i in reversed(range(self.op_size)):
|
|
live_in[i] = set(self._live_in[i])
|
|
live_out[i] = set(self._live_out[i])
|
|
for s in self._successors[i]:
|
|
self._live_out[i] |= self._live_in[s]
|
|
self._live_in[i] = self._uses[i] | (
|
|
self._live_out[i] - self._defs[i])
|
|
if self._reach_fixed_point(live_in, live_out):
|
|
break
|
|
|
|
def _get_diff(self, a, b):
|
|
u = a & b
|
|
return a - u, b - u
|
|
|
|
def _has_var(self, block_desc, var_name, is_forward):
|
|
if is_forward:
|
|
return block_desc.has_var(str(var_name))
|
|
else:
|
|
return block_desc.has_var_recursive(str(var_name))
|
|
|
|
def _find_var(self, block_desc, var_name, is_forward):
|
|
if is_forward:
|
|
return block_desc.find_var(str(var_name))
|
|
else:
|
|
return block_desc.find_var_recursive(str(var_name))
|
|
|
|
def _check_var_validity(self, block_desc, x, is_forward):
|
|
if str(x) == "@EMPTY@":
|
|
return False
|
|
if not self._has_var(block_desc, x, is_forward):
|
|
return False
|
|
if self._find_var(block_desc, x, is_forward).persistable():
|
|
return False
|
|
if self._find_var(block_desc, x,
|
|
is_forward).type() != core.VarDesc.VarType.LOD_TENSOR:
|
|
return False
|
|
if x in self._skip_opt:
|
|
return False
|
|
if not self._find_var(block_desc, x, is_forward).shape():
|
|
return False
|
|
return True
|
|
|
|
# TODO(panyx0718): This needs to be less hacky. It seems memory optimization
|
|
# doesn't consider vars copied between cpu and gpu.
|
|
def _update_skip_opt_set(self):
|
|
for i in range(self.op_size):
|
|
op = self._ops[i]
|
|
if op.type() == "fill_constant" and op.attr("force_cpu") == True:
|
|
self._skip_opt.update(op.output_arg_names())
|
|
|
|
def release_memory(self, skip_opt_set=None):
|
|
self._dataflow_analyze()
|
|
self._update_skip_opt_set()
|
|
if skip_opt_set:
|
|
self._skip_opt.update(skip_opt_set)
|
|
fwd_id = 0
|
|
bwd_id = 0
|
|
for i in range(self.op_size):
|
|
op = self._ops[i]
|
|
if op.type() in SUB_BLOCK_OPS:
|
|
continue
|
|
block_desc = op.block()
|
|
is_forward = i < self._forward_num
|
|
in_diff, out_diff = self._get_diff(self._live_in[i],
|
|
self._live_out[i])
|
|
can_optimize = filter(
|
|
lambda x: self._check_var_validity(block_desc, x, is_forward),
|
|
in_diff)
|
|
if can_optimize:
|
|
index = i + fwd_id + 1 if is_forward else i - self._forward_num + bwd_id + 1
|
|
delete_op = block_desc.insert_op(index)
|
|
delete_op.set_type("delete_var")
|
|
delete_op.set_input("X", can_optimize)
|
|
if is_forward:
|
|
fwd_id += 1
|
|
else:
|
|
bwd_id += 1
|
|
|
|
def memory_optimize(self, skip_opt_set=None, level=0):
|
|
def compare_shape(x_shape, cache_shape, opt_level):
|
|
if opt_level == 0:
|
|
return x_shape == cache_shape
|
|
elif opt_level == 1:
|
|
if (x_shape[0] == -1) ^ (cache_shape[0] == -1):
|
|
return False
|
|
x_size = abs(reduce(lambda x, y: x * y, x_shape))
|
|
cache_size = abs(reduce(lambda x, y: x * y, cache_shape))
|
|
if x_size <= cache_size:
|
|
return True
|
|
else:
|
|
raise ValueError("only support opt_level 0 or 1.")
|
|
return False
|
|
|
|
self._dataflow_analyze()
|
|
self._update_skip_opt_set()
|
|
# update skip set to meet users' demand
|
|
if skip_opt_set:
|
|
self._skip_opt.update(skip_opt_set)
|
|
self.pool = []
|
|
for i in range(self.op_size):
|
|
op = self._ops[i]
|
|
if op.type() in SUB_BLOCK_OPS:
|
|
continue
|
|
block_desc = op.block()
|
|
is_forward = i < self._forward_num
|
|
if self.pool:
|
|
defs_can_optimize = filter(
|
|
lambda x: self._check_var_validity(block_desc, x, is_forward),
|
|
self._defs[i])
|
|
out_pair = [
|
|
(x, self._find_var(block_desc, x, is_forward).shape())
|
|
for x in defs_can_optimize
|
|
]
|
|
for x, x_shape in out_pair:
|
|
# If x is both in uses and defs, it can not be optimized!
|
|
if x in self._uses[i]:
|
|
continue
|
|
for index, cache_pair in enumerate(self.pool):
|
|
cache_var = cache_pair[0]
|
|
cache_shape = cache_pair[1]
|
|
if not compare_shape(x_shape, cache_shape, level):
|
|
continue
|
|
|
|
if not self._has_var(block_desc, cache_var, is_forward):
|
|
continue
|
|
|
|
x_dtype = self._find_var(block_desc, x,
|
|
is_forward).dtype()
|
|
cache_dtype = self._find_var(block_desc, cache_var,
|
|
is_forward).dtype()
|
|
# TODO(qijun): actually, we should compare
|
|
# dtype_to_size[x_dtype] and dtype_to_size[cache_dtype]
|
|
if x_dtype != cache_dtype:
|
|
continue
|
|
|
|
if PRINT_LOG:
|
|
print(("Hit Cache !!!! cache pool index "
|
|
"is %d, var name is %s, "
|
|
"cached var name is %s, "
|
|
"var shape is %s ") % (index, x, cache_var,
|
|
str(cache_shape)))
|
|
self.pool.pop(index)
|
|
if x == cache_var:
|
|
break
|
|
# Rename the var to the cache var already with
|
|
# memory allocated in order to reuse the memory.
|
|
_rename_arg_(self._ops, x, cache_var, begin_idx=i)
|
|
self._program.block(block_desc.id).var(str(
|
|
x)).desc = self._find_var(block_desc, cache_var,
|
|
is_forward)
|
|
self._update_graph(x, cache_var, begin_idx=i)
|
|
break
|
|
|
|
in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i])
|
|
can_optimize = filter(
|
|
lambda x: self._check_var_validity(block_desc, x, is_forward),
|
|
in_diff)
|
|
if can_optimize:
|
|
for var_name in can_optimize:
|
|
self.pool.append((var_name, self._find_var(
|
|
block_desc, var_name, is_forward).shape()))
|
|
|
|
|
|
def _process_sub_block_pair(pdesc, sub_block_pair):
|
|
"""Creates a list of tuple each of which tracks info of a subblock.
|
|
|
|
Note: this function doesn't handle nested subblocks yet.
|
|
TODO(panyx0718): assert if case nested subblocks happen.
|
|
|
|
:param pdesc: ProgramDesc.
|
|
:param sub_block_pair: A list op pairs. Each op pair is the forward
|
|
op and backward op. The ops in the list are special that they contain
|
|
a subblock of ops.
|
|
:return: A list of tuples, each tuple is (all ops in a subblock pair
|
|
including forward and backward, number of forward ops,
|
|
all output args names of the ops in the subblock pairs).
|
|
"""
|
|
ops_list = []
|
|
block_desc = pdesc.block(0)
|
|
op_size = block_desc.op_size()
|
|
for fwd_op, bwd_op in sub_block_pair:
|
|
sub_block_ids = []
|
|
grad_sub_block_ids = []
|
|
sub_block_id_pair = []
|
|
sub_op_dict = {}
|
|
for i in range(op_size):
|
|
op = block_desc.op(i)
|
|
if op.type() == fwd_op:
|
|
sub_block_ids.append(op.attr("sub_block").id)
|
|
sub_op_dict[op.attr("sub_block").id] = op
|
|
elif op.type() == bwd_op:
|
|
grad_sub_block_ids.append(op.attr("sub_block").id)
|
|
sub_op_dict[op.attr("sub_block").id] = op
|
|
|
|
# Find fwd_op/bwd_op block pair
|
|
for grad_id in grad_sub_block_ids:
|
|
fwd_id = pdesc.block(grad_id).get_forward_block_idx()
|
|
if fwd_id in sub_block_ids:
|
|
sub_block_id_pair.append((fwd_id, grad_id))
|
|
sub_block_ids.remove(fwd_id)
|
|
|
|
# Get fwd_op/bwd_op block ops
|
|
for fwd_id, grad_id in sub_block_id_pair:
|
|
sub_block_ops = []
|
|
sub_block = pdesc.block(fwd_id)
|
|
block_op_size = sub_block.op_size()
|
|
for i in range(block_op_size):
|
|
sub_block_ops.append(sub_block.op(i))
|
|
|
|
grad_sub_block = pdesc.block(grad_id)
|
|
grad_sub_block_op_size = grad_sub_block.op_size()
|
|
for i in range(grad_sub_block_op_size):
|
|
sub_block_ops.append(grad_sub_block.op(i))
|
|
|
|
sub_op_output = set()
|
|
sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
|
|
sub_op_output.update(sub_op_dict[grad_id].output_arg_names())
|
|
ops_list.append((sub_block_ops, block_op_size, sub_op_output))
|
|
|
|
# Process rest fwd_op block ops
|
|
for fwd_id in sub_block_ids:
|
|
sub_block_ops = []
|
|
sub_block = pdesc.block(fwd_id)
|
|
sub_block_op_size = sub_block.op_size()
|
|
for i in range(sub_block_op_size):
|
|
sub_block_ops.append(sub_block.op(i))
|
|
sub_op_output = set()
|
|
sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
|
|
ops_list.append((sub_block_ops, sub_block_op_size, sub_op_output))
|
|
return ops_list
|
|
|
|
|
|
def _get_cfgs(input_program):
|
|
"""Process each block and create ControlFlowGraph for each of them.
|
|
|
|
:param input_program: Program object.
|
|
:return: A list of ControlFlowGraph, each corresponds to a block.
|
|
"""
|
|
ops_list = []
|
|
pdesc = input_program.get_desc()
|
|
block_desc = pdesc.block(0)
|
|
op_size = block_desc.op_size()
|
|
# Get global block ops
|
|
ops_list.append(
|
|
([block_desc.op(i) for i in range(op_size)], op_size, set()))
|
|
|
|
# Only process one level of nested subblock.
|
|
ops_list.extend(_process_sub_block_pair(pdesc, SUB_BLOCK_PAIR))
|
|
|
|
cfgs = [
|
|
ControlFlowGraph(input_program, ops, forward_num, skip_opt)
|
|
for ops, forward_num, skip_opt in ops_list
|
|
]
|
|
return cfgs
|
|
|
|
|
|
def memory_optimize(input_program, skip_opt_set=None, print_log=False, level=0):
|
|
"""Optimize memory by reusing var memory.
|
|
|
|
Note: it doesn't not support subblock nested in subblock.
|
|
|
|
:param input_program: Input Program
|
|
:param print_log: whether to print debug log.
|
|
:param level: If level=0, reuse if the shape is completely equal, o
|
|
:return:
|
|
"""
|
|
if level != 0 and level != 1:
|
|
raise ValueError("only support opt_level 0 or 1.")
|
|
global PRINT_LOG
|
|
PRINT_LOG = print_log
|
|
cfgs = _get_cfgs(input_program)
|
|
for cfg in cfgs:
|
|
cfg.memory_optimize(skip_opt_set=skip_opt_set, level=level)
|
|
|
|
|
|
def release_memory(input_program, skip_opt_set=None):
|
|
"""
|
|
Modify the input program and insert :code:`delete_op` to early drop not used
|
|
variables. The modification will be performed inplace.
|
|
|
|
Notes: This is an experimental API and could be removed in next few
|
|
releases. Users should not use this API.
|
|
|
|
Args:
|
|
input_program(Program): The program will be inserted :code:`delete_op`.
|
|
"""
|
|
cfgs = _get_cfgs(input_program)
|
|
for cfg in cfgs:
|
|
cfg.release_memory(skip_opt_set=skip_opt_set)
|