You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/fleet/fleet_wrapper.h

184 lines
6.7 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#ifdef PADDLE_WITH_PSLIB
#include <archive.h>
#include <pslib.h>
#endif
#include <atomic>
#include <ctime>
#include <map>
#include <random>
#include <string>
#include <vector>
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
namespace paddle {
namespace framework {
// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
// std::shared_ptr<FleetWrapper> fleet_ptr =
// FleetWrapper::GetInstance();
// string dist_desc;
// fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
// Sync: PullSparseVarsSync
// Async: PullSparseVarsAsync(not implemented currently)
// Push
// Sync: PushSparseVarsSync
// Async: PushSparseVarsAsync(not implemented currently)
// Async: PushSparseVarsWithLabelAsync(with special usage)
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status
class FleetWrapper {
public:
virtual ~FleetWrapper() {}
FleetWrapper() { scale_sparse_gradient_with_batch_size_ = true; }
// Pull sparse variables from server in Sync mode
// Param<in>: scope, table_id, var_names, fea_keys
// Param<out>: fea_values
void PullSparseVarsSync(const Scope& scope, const uint64_t table_id,
const std::vector<std::string>& var_names,
std::vector<uint64_t>* fea_keys,
std::vector<std::vector<float>>* fea_values,
int fea_dim);
void PullDenseVarsSync(const Scope& scope, const uint64_t table_id,
const std::vector<std::string>& var_names);
void PullDenseVarsAsync(
const Scope& scope, const uint64_t table_id,
const std::vector<std::string>& var_names,
std::vector<::std::future<int32_t>>* pull_dense_status);
void PushDenseParamSync(const Scope& scope, const uint64_t table_id,
const std::vector<std::string>& var_names);
// Push dense variables to server in async mode
// Param<in>: scope, table_id, var_names,
// Param<out>: push_sparse_status
void PushDenseVarsAsync(
const Scope& scope, const uint64_t table_id,
const std::vector<std::string>& var_names,
std::vector<::std::future<int32_t>>* push_sparse_status);
void PushDenseVarsSync(Scope* scope, const uint64_t table_id,
const std::vector<std::string>& var_names);
// Push sparse variables with labels to server in Async mode
// This is specially designed for click/show stats in server
// Param<in>: scope, table_id, var_grad_names,
// fea_keys, fea_labels, sparse_grad_names
// Param<out>: push_values, push_sparse_status
void PushSparseVarsWithLabelAsync(
const Scope& scope, const uint64_t table_id,
const std::vector<uint64_t>& fea_keys,
const std::vector<float>& fea_labels,
const std::vector<std::string>& sparse_key_names,
const std::vector<std::string>& sparse_grad_names, const int emb_dim,
std::vector<std::vector<float>>* push_values,
std::vector<::std::future<int32_t>>* push_sparse_status,
const int batch_size, const bool use_cvm);
// Push sparse variables to server in Async mode
// Param<In>: scope, table_id, fea_keys, sparse_grad_names
// Param<Out>: push_values, push_sparse_status
/*
void PushSparseVarsAsync(
const Scope& scope,
const uint64_t table_id,
const std::vector<uint64_t>& fea_keys,
const std::vector<std::string>& sparse_grad_names,
std::vector<std::vector<float>>* push_values,
std::vector<::std::future<int32_t>>* push_sparse_status);
*/
void InitServer(const std::string& dist_desc, int index);
void InitWorker(const std::string& dist_desc,
const std::vector<uint64_t>& host_sign_list, int node_num,
int index);
void StopServer();
uint64_t RunServer();
void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
// gather client ip
void GatherClients(const std::vector<uint64_t>& host_sign_list);
// get client info
std::vector<uint64_t> GetClientsInfo();
// create client to client connection
void CreateClient2ClientConnection();
// flush all push requests
void ClientFlush();
// mode = 0, load all feature
// mode = 1, laod delta feature, which means load diff
void LoadModel(const std::string& path, const int mode);
// mode = 0, save all feature
// mode = 1, save delta feature, which means save diff
void SaveModel(const std::string& path, const int mode);
void ShrinkSparseTable(int table_id);
void ShrinkDenseTable(int table_id, Scope* scope,
std::vector<std::string> var_list, float decay);
// register client to client communication
typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
// send client to client message
std::future<int32_t> SendClientToClientMsg(int msg_type, int to_client_id,
const std::string& msg);
template <typename T>
void Serialize(const std::vector<T*>& t, std::string* str);
template <typename T>
void Deserialize(std::vector<T>* t, const std::string& str);
static std::shared_ptr<FleetWrapper> GetInstance() {
if (NULL == s_instance_) {
s_instance_.reset(new paddle::framework::FleetWrapper());
}
return s_instance_;
}
// this performs better than rand_r, especially large data
std::default_random_engine& LocalRandomEngine();
#ifdef PADDLE_WITH_PSLIB
static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif
private:
static std::shared_ptr<FleetWrapper> s_instance_;
#ifdef PADDLE_WITH_PSLIB
std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
#endif
protected:
static bool is_initialized_;
bool scale_sparse_gradient_with_batch_size_;
DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};
} // end namespace framework
} // end namespace paddle