You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
245 lines
9.8 KiB
245 lines
9.8 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "paddle/fluid/framework/details/container_cast.h"
|
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
|
#include "paddle/fluid/framework/details/variable_visitor.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
#include "paddle/fluid/platform/profiler.h"
|
|
|
|
#ifdef PADDLE_WITH_NCCL
|
|
DECLARE_bool(sync_nccl_allreduce);
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
#if defined(PADDLE_WITH_NCCL)
|
|
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
|
|
const std::vector<Scope *> &local_scopes,
|
|
const std::vector<platform::Place> &places,
|
|
const platform::NCCLCommunicator *ctxs)
|
|
: NCCLOpHandleBase(node, places, ctxs), local_scopes_(local_scopes) {
|
|
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The number of places and the number of local scopes "
|
|
"should be equal, but got number of places is %d and "
|
|
"number of local scopes is %d.",
|
|
places_.size(), local_scopes_.size()));
|
|
}
|
|
#else
|
|
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
|
|
const std::vector<Scope *> &local_scopes,
|
|
const std::vector<platform::Place> &places)
|
|
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {
|
|
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The number of places and the number of local scopes "
|
|
"should be equal, but got number of places is %d and "
|
|
"number of local scopes is %d.",
|
|
places_.size(), local_scopes_.size()));
|
|
}
|
|
#endif
|
|
|
|
void AllReduceOpHandle::RunImpl() {
|
|
platform::RecordEvent record_event(Name());
|
|
|
|
WaitInputVarGenerated();
|
|
std::vector<VarHandleBase *> inputs = this->Inputs();
|
|
std::vector<VarHandleBase *> outputs = this->Outputs();
|
|
auto in_var_handles = DynamicCast<VarHandle>(inputs);
|
|
auto out_var_handles = DynamicCast<VarHandle>(outputs);
|
|
AllReduceImpl(in_var_handles, out_var_handles);
|
|
}
|
|
|
|
void AllReduceOpHandle::AllReduceImpl(
|
|
const std::vector<VarHandle *> &in_var_handles,
|
|
const std::vector<VarHandle *> &out_var_handles) {
|
|
size_t num_places = places_.size();
|
|
PADDLE_ENFORCE_EQ(in_var_handles.size(), num_places,
|
|
platform::errors::InvalidArgument(
|
|
"The NoDummyInputSize should be equal "
|
|
"to the number of places, but got NoDummyInputSize is "
|
|
"%d and the number of place is %d.",
|
|
in_var_handles.size(), num_places));
|
|
PADDLE_ENFORCE_EQ(
|
|
in_var_handles.size(), out_var_handles.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The NoDummyInputSize and NoDummyOutputSize should be "
|
|
"equal, but got NoDummyInputSize is %d and NoDummyOutputSize is %d.",
|
|
in_var_handles.size(), out_var_handles.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
local_exec_scopes_.size(), num_places,
|
|
platform::errors::InvalidArgument(
|
|
"The number of local scopes should be equal "
|
|
"to the number of places, but got the number of local scopes is "
|
|
"%d and the number of place is %d.",
|
|
in_var_handles.size(), num_places));
|
|
|
|
std::vector<const void *> lod_tensor_data;
|
|
std::vector<platform::Place> places;
|
|
lod_tensor_data.reserve(num_places);
|
|
places.reserve(num_places);
|
|
int64_t numel = -1;
|
|
bool is_gpu_place = false;
|
|
auto dtype = static_cast<framework::proto::VarType::Type>(0);
|
|
for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
|
|
auto &local_scope = local_exec_scopes_[i];
|
|
auto var = local_scope->FindVar(in_var_handles[i]->name());
|
|
PADDLE_ENFORCE_NOT_NULL(var, platform::errors::NotFound(
|
|
"Variable %s is not found in local scope.",
|
|
in_var_handles[i]->name()));
|
|
auto &lod_tensor = var->Get<LoDTensor>();
|
|
|
|
if (i == 0) {
|
|
numel = static_cast<int64_t>(lod_tensor.numel());
|
|
// only enforce place0, we will enforce other palce numel == place0 numel
|
|
PADDLE_ENFORCE_GT(
|
|
numel, 0,
|
|
platform::errors::PreconditionNotMet(
|
|
"The numel of tensor %s should be > 0, but got numel is %d.",
|
|
in_var_handles[i]->name(), numel));
|
|
dtype = lod_tensor.type();
|
|
is_gpu_place = platform::is_gpu_place(lod_tensor.place());
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
numel, static_cast<int64_t>(lod_tensor.numel()),
|
|
platform::errors::PreconditionNotMet(
|
|
"The size of tensors of the same variable in different local "
|
|
"scopes should be equal."));
|
|
PADDLE_ENFORCE_EQ(
|
|
dtype, lod_tensor.type(),
|
|
platform::errors::PreconditionNotMet(
|
|
"The dtype of tensors of the same variable in different local "
|
|
"scopes should be equal."));
|
|
PADDLE_ENFORCE_EQ(is_gpu_place, platform::is_gpu_place(lod_tensor.place()),
|
|
platform::errors::PreconditionNotMet(
|
|
"The place type of tensors of the same variable "
|
|
"in different local scopes should be equal."));
|
|
|
|
lod_tensor_data.emplace_back(lod_tensor.data<void>());
|
|
places.emplace_back(lod_tensor.place());
|
|
|
|
VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
|
|
<< ", out_name:" << out_var_handles[i]->name();
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
in_var_handles[i]->name(), out_var_handles[i]->name(),
|
|
platform::errors::InvalidArgument(
|
|
"The name of input and output of all_reduce op should be equal, "
|
|
"but got input is %s and output is %s.",
|
|
in_var_handles[i]->name(), out_var_handles[i]->name()));
|
|
}
|
|
|
|
std::vector<std::string> grad_var_names;
|
|
grad_var_names.reserve(num_places);
|
|
for (auto &out_var : out_var_handles) {
|
|
grad_var_names.emplace_back(out_var->Name());
|
|
}
|
|
|
|
AllReduceFunc(lod_tensor_data, dtype, numel, places, grad_var_names);
|
|
}
|
|
|
|
void AllReduceOpHandle::AllReduceFunc(
|
|
std::vector<const void *> lod_tensor_data,
|
|
const framework::proto::VarType::Type &dtype, int64_t numel,
|
|
const std::vector<platform::Place> &places,
|
|
const std::vector<std::string> &out_var_names) {
|
|
if (is_gpu_place(places[0])) {
|
|
#if defined(PADDLE_WITH_NCCL)
|
|
PADDLE_ENFORCE_NOT_NULL(nccl_ctxs_,
|
|
platform::errors::InvalidArgument(
|
|
"The nccl context should not be NULL."));
|
|
ncclDataType_t nccl_dtype = platform::ToNCCLDataType(dtype);
|
|
std::vector<std::function<void()>> all_reduce_calls;
|
|
for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
|
|
auto &p = places[i];
|
|
void *buffer = const_cast<void *>(lod_tensor_data.at(i));
|
|
all_reduce_calls.emplace_back([=] {
|
|
NCCLAllReduce(p, buffer, buffer, numel, nccl_dtype, ncclSum);
|
|
});
|
|
}
|
|
NCCLAllReduceFunc(all_reduce_calls);
|
|
#else
|
|
PADDLE_THROW(
|
|
platform::errors::PreconditionNotMet("Not compiled with CUDA."));
|
|
#endif
|
|
} else { // Special handle CPU only Operator's gradient. Like CRF
|
|
auto &trg = *local_exec_scopes_[0]
|
|
->FindVar(out_var_names[0])
|
|
->GetMutable<LoDTensor>();
|
|
|
|
// Reduce All Tensor to trg in CPU
|
|
ReduceBufferData func(lod_tensor_data, trg.data<void>(), numel);
|
|
VisitDataType(trg.type(), func);
|
|
|
|
for (size_t i = 1; i < local_exec_scopes_.size(); ++i) {
|
|
auto &scope = local_exec_scopes_[i];
|
|
auto &p = places[i];
|
|
auto *var = scope->FindVar(out_var_names[i]);
|
|
|
|
size_t size = numel * SizeOfType(trg.type());
|
|
RunAndRecordEvent(p, [&trg, var, p, size] {
|
|
auto dst_ptr = var->GetMutable<framework::LoDTensor>()->data<void>();
|
|
platform::CPUPlace cpu_place;
|
|
memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data<void>(), size);
|
|
});
|
|
}
|
|
}
|
|
VLOG(10) << Name() << " size:" << numel * SizeOfType(dtype);
|
|
}
|
|
|
|
#if defined(PADDLE_WITH_NCCL)
|
|
void AllReduceOpHandle::NCCLAllReduceFunc(
|
|
const std::vector<std::function<void()>> &all_reduce_calls) {
|
|
this->RunAndRecordEvent([&] {
|
|
if (all_reduce_calls.size() == 1UL) {
|
|
// Do not use NCCLGroup when manage NCCL by per thread per device
|
|
all_reduce_calls[0]();
|
|
} else {
|
|
platform::NCCLGroupGuard guard;
|
|
for (auto &call : all_reduce_calls) {
|
|
call();
|
|
}
|
|
}
|
|
});
|
|
|
|
SyncNCCLAllReduce();
|
|
}
|
|
|
|
void AllReduceOpHandle::SyncNCCLAllReduce() {
|
|
if (FLAGS_sync_nccl_allreduce) {
|
|
for (auto &p : places_) {
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, p).device;
|
|
auto *nccl_ctxs =
|
|
nccl_ctxs_->GetRunEnvNCCLCtx(run_order_, use_hierarchical_allreduce_);
|
|
auto &nccl_ctx = nccl_ctxs->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|