You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_addmm_op.py

256 lines
8.7 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestAddMMOp(OpTest):
# test basic
def setUp(self):
self.op_type = "addmm"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {
'Input': np.random.random((100, 1)).astype(self.dtype),
'X': np.random.random((100, 10)).astype(self.dtype),
'Y': np.random.random((10, 20)).astype(self.dtype),
}
self.outputs = {
'Out':
self.inputs['Input'] + np.dot(self.inputs['X'], self.inputs['Y'])
}
def init_dtype_type(self):
pass
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['Input', 'X', 'Y'], 'Out')
def test_check_grad_x(self):
self.check_grad(['X'], 'Out', no_grad_set=None)
def test_check_grad_y(self):
self.check_grad(['Y'], 'Out', no_grad_set=None)
def test_check_grad_input(self):
self.check_grad(['Input'], 'Out', no_grad_set=None)
class TestAddMMOpError(unittest.TestCase):
# test error
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of addmm_op must be Variable.
input = fluid.create_lod_tensor(
np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
x1 = fluid.create_lod_tensor(
np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
x2 = fluid.create_lod_tensor(
np.array([[-1, -1], [-1, -1]]), [[2]], fluid.CPUPlace())
self.assertRaises(TypeError, paddle.addmm, input, x1, x2)
# The input dtype of mul_op must be float32 or float64.
input = fluid.layers.data(
name='input',
shape=[4, 4],
dtype="int32",
append_batch_size=False)
x3 = fluid.layers.data(
name='x3', shape=[4, 4], dtype="int32", append_batch_size=False)
x4 = fluid.layers.data(
name='x4', shape=[4, 4], dtype="int32", append_batch_size=False)
self.assertRaises(TypeError, paddle.addmm, input, x3, x4)
# x and y dimension mismatch
x5 = fluid.layers.data(
name='x5',
shape=[4, 5],
dtype="float32",
append_batch_size=False)
x6 = fluid.layers.data(
name='x6',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
self.assertRaises(ValueError, paddle.addmm, input, x5, x6)
# input and x are not broadcastable
x7 = fluid.layers.data(
name='x7',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
x8 = fluid.layers.data(
name='x8',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
input1 = fluid.layers.data(
name='input1',
shape=[2, 4],
dtype="float32",
append_batch_size=False)
self.assertRaises(ValueError, paddle.addmm, input1, x7, x8)
# input and x are not broadcastable
x9 = fluid.layers.data(
name='x9',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
x10 = fluid.layers.data(
name='x10',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
input2 = fluid.layers.data(
name='input2',
shape=[1, 2],
dtype="float32",
append_batch_size=False)
self.assertRaises(ValueError, paddle.addmm, input2, x9, x10)
x11 = fluid.layers.data(
name='x11',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
x12 = fluid.layers.data(
name='x12',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
input3 = fluid.layers.data(
name='input3',
shape=[4, 2],
dtype="float32",
append_batch_size=False)
self.assertRaises(ValueError, paddle.addmm, input3, x11, x12)
x13 = fluid.layers.data(
name='x13',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
x14 = fluid.layers.data(
name='x14',
shape=[4, 4],
dtype="float32",
append_batch_size=False)
input4 = fluid.layers.data(
name='input4',
shape=[3, 1],
dtype="float32",
append_batch_size=False)
self.assertRaises(ValueError, paddle.addmm, input4, x13, x14)
class TestAddMMOp2(TestAddMMOp):
# test alpha and beta
def setUp(self):
self.op_type = "addmm"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {
'Input': np.random.random((20, 30)).astype(self.dtype),
'X': np.random.random((20, 6)).astype(self.dtype),
'Y': np.random.random((6, 30)).astype(self.dtype),
}
self.attrs = {
'Alpha': 0.1,
'Beta': 1.0,
}
self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}
class TestAddMMOp3(OpTest):
# test broadcast
def setUp(self):
self.op_type = "addmm"
self.dtype = np.float64
self.init_dtype_type()
self.inputs = {
'Input': np.random.random((1, 100)).astype(self.dtype),
'X': np.random.random((20, 10)).astype(self.dtype),
'Y': np.random.random((10, 100)).astype(self.dtype),
}
self.attrs = {
'Alpha': 0.5,
'Beta': 2.0,
}
self.outputs = {'Out': self.attrs['Beta'] * self.inputs['Input'] + \
self.attrs['Alpha'] * np.dot(self.inputs['X'], self.inputs['Y'])}
def init_dtype_type(self):
pass
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['Input', 'X', 'Y'], 'Out')
def test_check_grad_x(self):
self.check_grad(['X'], 'Out', no_grad_set=None)
def test_check_grad_y(self):
self.check_grad(['Y'], 'Out', no_grad_set=None)
def test_check_grad_input(self):
self.check_grad(['Input'], 'Out', no_grad_set=None)
class TestAddMMOp4(unittest.TestCase):
def test_api_with_dygraph(self):
np_input = np.random.random((20, 30)).astype(np.float32)
np_x = np.random.random((20, 6)).astype(np.float32)
np_y = np.random.random((6, 30)).astype(np.float32)
with fluid.dygraph.guard():
input = fluid.dygraph.to_variable(np_input)
x = fluid.dygraph.to_variable(np_x)
y = fluid.dygraph.to_variable(np_y)
out = paddle.tensor.addmm(input, x, y)
assert np.allclose(np_input + np.dot(np_x, np_y), out.numpy())
'''
class TestAddMMAPI(unittest.TestCase):
def test_api_error(self):
data_x = np.ones((2, 2)).astype(np.float32)
data_y = np.ones((2, 2)).astype(np.float32)
data_input = np.ones((2, 2)).astype(np.float32)
paddle.disable_static()
def test_error1():
data_x_wrong = np.ones((2, 3)).astype(np.float32)
x = paddle.to_tensor(data_x_wrong)
y = paddle.to_tensor(data_y)
input = paddle.to_tensor(data_input)
out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
self.assertRaises(ValueError, test_error1)
'''
if __name__ == "__main__":
unittest.main()