You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_cosine_similarity_api.py

141 lines
4.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard, Executor, default_main_program
class TestCosineSimilarityAPI(unittest.TestCase):
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def _get_numpy_out(self, x1, x2, axis=1, eps=1e-8):
w12 = np.sum(x1 * x2, axis=axis)
w1 = np.sum(x1 * x1, axis=axis)
w2 = np.sum(x2 * x2, axis=axis)
n12 = np.sqrt(np.clip(w1 * w2, eps * eps, None))
cos_sim = w12 / n12
return cos_sim
def check_static_result(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
shape = [10, 15]
axis = 1
eps = 1e-8
np.random.seed(0)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
x1 = paddle.data(name="x1", shape=shape)
x2 = paddle.data(name="x2", shape=shape)
result = F.cosine_similarity(x1, x2, axis=axis, eps=eps)
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x1": np_x1,
"x2": np_x2},
fetch_list=[result])
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(fetches[0], np_out))
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph_1(self):
paddle.disable_static()
shape = [10, 15]
axis = 1
eps = 1e-8
np.random.seed(1)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_2(self):
paddle.disable_static()
shape = [12, 13]
axis = 0
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_3(self):
paddle.disable_static()
shape1 = [10, 12, 10]
shape2 = [10, 1, 10]
axis = 2
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape1).astype(np.float32)
np_x2 = np.random.rand(*shape2).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_4(self):
paddle.disable_static()
shape1 = [23, 12, 1]
shape2 = [23, 1, 10]
axis = 2
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape1).astype(np.float32)
np_x2 = np.random.rand(*shape2).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
cos_sim_func = nn.CosineSimilarity(axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = cos_sim_func(tesnor_x1, tesnor_x2)
self.assertTrue(np.allclose(y.numpy(), np_out))
if __name__ == '__main__':
unittest.main()